CS388: Natural Language Processing
Lecture 1: Introduction

Greg Durrett

Administrivia

- Lecture: Tuesdays and Thursdays 9:30am - 10:45am
- Gradescope: you should've gotten an email
- Piazza: link on the course website
- Office hours: Office hours: Tuesday 1pm-2pm, Wednesday 3:30pm-4:30pm
 - Note: my OHs today are 12:30pm-1:30pm
- TA: Xi Ye. See course website for OHs

Course Requirements

- 391L Machine Learning (or equivalent)
- 311 or 311H Discrete Math for Computer Science (or equivalent)
- Python experience
- Additional prior exposure to probability, linear algebra, optimization, linguistics, and NLP useful but not required
- Mini1 is out now (due January 28), please look at it soon
- If this seems like it’ll be challenging for you, come and talk to me (this is smaller-scale than the projects, which are smaller-scale than the final project)

What’s the goal of NLP?

- Be able to solve problems that require deep understanding of text
- Example: dialogue systems

Siri, what’s your favorite kind of movie?
I like superhero movies!
What’s come out recently?
The Avengers
Question Answering

When was Abraham Lincoln born?

<table>
<thead>
<tr>
<th>Name</th>
<th>Birthday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lincoln, Abraham</td>
<td>2/12/1809</td>
</tr>
<tr>
<td>Washington, George</td>
<td>2/22/1732</td>
</tr>
<tr>
<td>Adams, John</td>
<td>10/30/1735</td>
</tr>
</tbody>
</table>

February 12, 1809

How many visitor centers are there in Rocky Mountain National Park?

The park has a total of five visitor centers

five

Machine Translation

The Political Bureau of the CPC Central Committee held a meeting on July 30 to analyze and study the current economic situation and plan economic work in the second half of the year.

Automatic Summarization

Google Critic Ousted From Think Tank Funded by the Tech Giant

WASHINGTON — In the hours after European antitrust regulators levied a record $5 billion fine against Google in late June, an influential Washington think tank learned what can happen when a tech giant that shapes public policy debates with its enormous wealth is criticized.

...But not long after one of New America’s scholars posted a statement critical of Google, Mr. Schmidt, Google’s CEO, was displeased.

The writer and his team were dismissed.

NLP Analysis Pipeline

Text Analysis
- Syntactic parses
- Coreference resolution
- Entity disambiguation
- Discourse analysis

Applications
- Summarize
- Extract information
- Answer questions
- Identify sentiment
- Translate

NLP is about building these pieces!

All of these components are modeled with statistical approaches trained with machine learning.
How do we represent language?

Labels
- the movie was good
- Beyoncé had one of the best videos of all time
- Tom Cruise stars in the new Mission Impossible film

Sequences/tags
- PERSON
- WORK_OF_ART

Trees
- S
- VP
- NP
- PP
- λx. flight(x) ∧ dest(x)=Miami
- I eat cake with icing
- flights to Miami

How do we use these representations?

Text

Text Analysis
- Labels
- Sequences
- Trees

Applications
- Extract syntactic features
- Tree-structured neural networks
- Tree transducers (for machine translation)
- end-to-end models

Main question: What representations do we need for language? What do we want to know about it?
Boils down to: what ambiguities do we need to resolve?

Why is language hard? (and how can we handle that?)

Language is Ambiguous!

- Hector Levesque (2011): “Winograd schema challenge” (named after Terry Winograd, the creator of SHRDLU)

 The city council refused the demonstrators a permit because they advocated violence

 The city council refused the demonstrators a permit because they feared violence

 The city council refused the demonstrators a permit because they _____ violence

- >5 datasets in the last two years examining this problem and commonsense reasoning
- Referential ambiguity
Language is Ambiguous!

- Syntactic and semantic ambiguities: parsing needed to resolve these, but need context to figure out which parse is correct

Language is Really Ambiguous!

- There aren’t just one or two possibilities which are resolved pragmatically
- Combinatorially many possibilities, many you won’t even register as ambiguities, but systems still have to resolve them

What do we need to understand language?

- Lots of data

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>Cela constituerait une solution transitoire qui permettrait de conduire à terme à une charte à valeur contraignante.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMAN</td>
<td>That would be an interim solution which would make it possible to work towards a binding charter in the long term.</td>
</tr>
<tr>
<td>1x DATA</td>
<td>[this] [constituerait] [solution] [transitoire] [permis] [à] [conduire] [à] [terme] [à] [charters] [à] [value] [contraignante].</td>
</tr>
<tr>
<td>10x DATA</td>
<td>[il] [would] [a solution] [transitional] [which] [would] [off] [lead] [to] [term] [to] [a] [charter] [to] [value] [binding].</td>
</tr>
<tr>
<td>100x DATA</td>
<td>[this] [would be] [a transitional solution] [which would] [lead to] [a charter] [legally binding].</td>
</tr>
<tr>
<td>1000x DATA</td>
<td>[that would be] [transitional solution] [which would] [eventually lead to] [a binding charter].</td>
</tr>
</tbody>
</table>

What do we need to understand language?

- World knowledge: have access to information beyond the training data

- What is a green light? How do we understand what “green lighting” does?
- Need commonsense knowledge
What do we need to understand language?

- Grounding: learn what fundamental concepts actually mean in a data-driven way

> Question: What object is right of 02?

Golland et al. (2010)
McMahan and Stone (2015)

- Linguistic structure

 ...but computers probably won’t understand language the same way humans do

 However, linguistics tells us what phenomena we need to be able to deal with and gives us hints about how language works

 a. John has been having a lot of trouble arranging his vacation.
 b. He cannot find anyone to take over his responsibilities. (he = John)
 \[C_p \rightarrow \text{John}; \quad C_t \rightarrow \{ \text{John} \} \]
 c. He called up Mike yesterday to work out a plan. (he = John)
 \[C_p \rightarrow \text{John}; \quad C_t \rightarrow \{ \text{John, Mike} \} \text{ (CONTINUE)} \]
 d. Mike has annoyed him a lot recently.
 \[C_p \rightarrow \text{John}; \quad C_t \rightarrow \{ \text{Mike, John} \} \text{ (RETAIN)} \]
 e. He called John at 5 AM on Friday last week. (he = Mike)
 \[C_p \rightarrow \text{Mike}; \quad C_t \rightarrow \{ \text{Mike, John} \} \text{ (SHIFT)} \]

Centering Theory
Grosz et al. (1995)

What techniques do we use?
(to combine data, knowledge, linguistics, etc.)

A brief history of (modern) NLP

- Largely rule-based, expert systems

 earliest stat MT work at IBM
 Ratnaparkhi tagger
 Unsup: topic models, grammar induction
 Pretraining

- Penn treebank

 Ratnaparkhi tagger
 NNP VBZ
 Semi-sup, structured prediction

- Collins vs. Charniak parsers

 Sup: SVMs, CRFs, NER, Sentiment

- Unsup: topic models, grammar induction

- Neural

Supervised vs. Unsupervised

- **Supervised techniques** work well on very little data (even neural networks)
 - annotation (two hours!)
 - better system!

- Fully unsupervised techniques have fallen out of favor

“Learning a Part-of-Speech Tagger from Two Hours of Annotation”
Garrette and Baldridge (2013)

Pretraining

- Language modeling: predict the next word in a text \(P(w_i \mid w_1, \ldots, w_{i-1}) \)
 - \(P(w \mid \text{I want to go to}) = 0.01 \) Hawai‘i
 - \(0.005 \) LA
 - \(0.0001 \) class

- Fully unsupervised techniques have fallen out of favor

- Train a neural network to do language modeling on massive unlabeled text, fine-tune it to do (tagging, sentiment, question answering, …)

Peters et al. (2018), Devlin et al. (2019)

Interpretability

- When we have complex models, how do we understand their decisions?
 - The movie is *mediocre*, maybe even *bad*.
 - **Negative** 99.8%

- “Attribution”: understand what parts of the input contribute to a prediction
 - Why was it class A instead of class B?
 - What is the “counterfactual” scenario we are considering (the foil)?
 - *I drank tea because I don’t like coffee*
 - *I drank tea because I was thirsty* (Jacovi and Goldberg, 2020)

- Dataset biases: does our data have flaws that prevent the model from doing the right thing?

- Probing: what representations get learned in deep models?
Where are we?

- NLP consists of: analyzing and building representations for text, solving problems involving text
- These problems are hard because language is ambiguous, requires drawing on data, knowledge, and linguistics to solve
- Knowing which techniques use requires understanding dataset size, problem complexity, and a lot of tricks!
- NLP encompasses all of these things

NLP vs. Computational Linguistics

- NLP: build systems that deal with language data
- CL: use computational tools to study language

Computational tools for other purposes: literary theory, political science...

Outline

- ML and structured prediction for NLP
 - Neural nets

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 19</td>
<td>Introduction</td>
</tr>
<tr>
<td>Jan 21</td>
<td>Binary Classification</td>
</tr>
<tr>
<td>Jan 26</td>
<td>Multiclass Classification</td>
</tr>
<tr>
<td>Jan 28</td>
<td>Sequence Models 1: HMMs</td>
</tr>
<tr>
<td>Feb 2</td>
<td>Sequence Models 2: CRFs</td>
</tr>
<tr>
<td>Feb 4</td>
<td>Neural 1: Feedforward</td>
</tr>
<tr>
<td>Feb 9</td>
<td>Neural 2: Word Embeddings, Sae</td>
</tr>
<tr>
<td>Feb 11</td>
<td>Neural 3: RNNs</td>
</tr>
<tr>
<td>Feb 16</td>
<td>Neural 4: Language Modeling, ELMOs</td>
</tr>
<tr>
<td>Feb 18</td>
<td>Neural 5: Interpreting NNs</td>
</tr>
</tbody>
</table>

Hamilton et al. (2016)

Bamman, O'Connor, Smith (2013)
Outline: Syntax + Semantics

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 23</td>
<td>Trees 1: Constituency, PCFGs</td>
</tr>
<tr>
<td>Feb 25</td>
<td>Trees 2: Better grammars, Dependency</td>
</tr>
<tr>
<td>Mar 2</td>
<td>Trees 3: Shift-reduce, State-of-the-art parsers</td>
</tr>
<tr>
<td>Mar 4</td>
<td>Semantics 1</td>
</tr>
<tr>
<td>Mar 9</td>
<td>Semantics 2 / Seq2seq 1</td>
</tr>
<tr>
<td>Mar 11</td>
<td>Seq2seq 2: Attention</td>
</tr>
<tr>
<td>Mar 16</td>
<td>NO CLASS</td>
</tr>
<tr>
<td>Mar 18</td>
<td>NO CLASS</td>
</tr>
</tbody>
</table>

Outline: Applications

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 23</td>
<td>Seq2seq 3: Degeneration / Annotation, Dataset Skills</td>
</tr>
<tr>
<td>Mar 25</td>
<td>MT 1: Phrase-based</td>
</tr>
<tr>
<td>Mar 30</td>
<td>MT 2: Neural, Transformers</td>
</tr>
<tr>
<td>April 1</td>
<td>Pre-training 1: BERT, GPT</td>
</tr>
<tr>
<td>April 6</td>
<td>Pre-training 2: BART/TS and beyond</td>
</tr>
<tr>
<td>April 8</td>
<td>Generation 1: Dialogue, Ethics</td>
</tr>
<tr>
<td>April 13</td>
<td>Generation 2: Summarization</td>
</tr>
<tr>
<td>April 15</td>
<td>QA 1: Reading comprehension</td>
</tr>
<tr>
<td>April 20</td>
<td>QA 2: Multi-hop, etc.</td>
</tr>
<tr>
<td>April 22</td>
<td>Guest Lecture: Jason Baldridge (Google)</td>
</tr>
<tr>
<td>April 27</td>
<td>Multilingual / Cross-lingual models</td>
</tr>
<tr>
<td>April 29</td>
<td>Wrapup + Ethics</td>
</tr>
<tr>
<td>May 4</td>
<td>PP presentations 1</td>
</tr>
<tr>
<td>May 6</td>
<td>PP presentations 2</td>
</tr>
</tbody>
</table>

Ethics

- E.g., “toxic degeneration”: systems can generate {racist, sexist, ...} content

 ![Generation Options](https://toxicdegeneration.allenai.org/)

- We will touch on ethical issues throughout the course

Course Goals

- Cover fundamental machine learning techniques used in NLP
- Understand how to look at language data and approach linguistic phenomena
- Cover modern NLP problems encountered in the literature: what are the active research topics in 2021?
- Make you a “producer” rather than a “consumer” of NLP tools
 - The four assignments should teach you what you need to know to understand nearly any system in the literature (e.g.: state-of-the-art NER system = project 1 + mini 2 + BERT, basic MT system = project 2)
Assignments

- Two minis (10% each), two projects (20% each)
- Implementation-oriented, with an open-ended component to each
- Mini 1 (classification) is out NOW
- 1 week for minis, ~2 weeks per project, 5 “slip days” for automatic extensions

Grading:
- Minis: largely graded based on code performance
- Projects: graded on a mix of code performance, writeup, extension

These projects require understanding of the concepts, ability to write performant code, and ability to think about how to debug complex systems. They are challenging, so start early!

Assignments

- Final project (40%)
- Groups of 2 preferred, 1 is possible
- (Brief!) proposal to be approved by me by the midpoint of the semester
- Written in the style and tone of an ACL paper

Conduct

A climate conducive to learning and creating knowledge is the right of every person in our community. Bias, harassment and discrimination of any sort have no place here.

You belong here.

Survey (on Instapoll)

1. Name
2. Fill in: I am a [CS / ____] [PhD / masters / undergrad] in year [1 2 3 4 5+]
3. Write one reason you want to take this class or one thing you want to get out of it
4. One interesting fact about yourself, or what you like to do in your spare time