Lecture 9: Language Modeling + Pretraining
Administrivia

- Mini 2 due March 2
- +3 slip days for everyone
- Rest of the course pushed back
- Final project spec out now
Recall: RNNs

- Cell that takes some input x, has some hidden state h, and updates that hidden state and produces output y (all vector-valued)
Recall: RNN Abstraction

- Encoding of each word — can pass this to another layer to make a prediction (can also pool these to get a different sentence encoding)

- Encoding of the sentence — can pass this a decoder or make a classification decision about the sentence

- RNN can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors
Recall: Training RNNs

- Loss = negative log likelihood of probability of gold label (or use SVM or other loss)
- Backpropagate through entire network
- Example: sentiment analysis
Recall: Training RNNs

- Loss = negative log likelihood of probability of gold predictions, summed over the tags
- Loss terms filter back through network
- Example: language modeling (predict next word given context) or POS tagging
This Lecture

- RNN applications
- Language modeling
 - N-gram models
 - Neural LMs
- LM-based pretraining: ELMo
RNN Applications
What can LSTMs model?

- Sentiment
 - Encode one sentence, predict
- Language models
 - Move left-to-right, per-token prediction
- Translation
 - Encode sentence + then decode, use token predictions for attention weights (later in the course)
- Textual entailment
 - Encode two sentences, predict
SenPment Analysis

- Semi-supervised method: initialize the language model by training to reproduce the document in a seq2seq fashion (a type of pre-training called a sequential autoencoder)

<table>
<thead>
<tr>
<th>Model</th>
<th>Test error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM with tuning and dropout</td>
<td>13.50%</td>
</tr>
<tr>
<td>LSTM initialized with word2vec embeddings</td>
<td>10.00%</td>
</tr>
<tr>
<td>LM-LSTM (see Section 2)</td>
<td>7.64%</td>
</tr>
<tr>
<td>SA-LSTM (see Figure 1)</td>
<td>7.24%</td>
</tr>
<tr>
<td>Full+Unlabeled+BoW [21]</td>
<td>11.11%</td>
</tr>
<tr>
<td>WRRBM + BoW (bnc) [21]</td>
<td>10.77%</td>
</tr>
<tr>
<td>NBSVM-bi (Naïve Bayes SVM with bigrams) [35]</td>
<td>8.78%</td>
</tr>
<tr>
<td>seq2-bown-CNN (ConvNet with dynamic pooling) [11]</td>
<td>7.67%</td>
</tr>
<tr>
<td>Paragraph Vectors [18]</td>
<td>7.42%</td>
</tr>
</tbody>
</table>

Dai and Le (2015)
Natural Language Inference

<table>
<thead>
<tr>
<th>Premise</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A boy plays in the snow</td>
<td>entails</td>
</tr>
<tr>
<td>A man inspects the uniform of a figure</td>
<td>contradicts</td>
</tr>
<tr>
<td>An older and younger man smiling</td>
<td>neutral</td>
</tr>
<tr>
<td></td>
<td>The man is sleeping</td>
</tr>
<tr>
<td></td>
<td>Two men are smiling and laughing at cats playing</td>
</tr>
</tbody>
</table>

- Long history of this task: “Recognizing Textual Entailment” challenge in 2006 (Dagan, Glickman, Magnini)
- Early datasets: small (hundreds of pairs), very ambitious (lots of world knowledge, temporal reasoning, etc.)
SNLI Dataset

- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process
- 100D LSTM: 78% accuracy
- 300D LSTM: 80% accuracy
 (Bowman et al., 2016)
- 300D BiLSTM: 83% accuracy
 (Liu et al., 2016)
- Later: better models for this

Bowman et al. (2015)
Language Modeling
So far in this class: mostly text analysis (about tagging, classifying, etc. the structure of text)

Haven’t talked about text generation tasks
Challenges in Text Generation

- Dialogue, machine translation, summarization, etc.
 - What to say (content selection + content planning) and how to say it
- Template-based generation systems always generate fluent output
- For learned systems, how do we make sure language is plausible?
- Language models: place a distribution $P(w)$ over strings w in a language
 - Next week: $P(T,w)$ modeled by probabilistic context-free grammars
 - Today: autoregressive models $P(w) = P(w_1)P(w_2|w_1)P(w_3|w_1,w_2)\ldots$
N-gram Language Models

\[P(w) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) \ldots \]

- n-gram models: distribution of next word is a multinomial conditioned on previous n-1 words
 \[P(w_i|w_1, \ldots, w_{i-1}) = P(w_i|w_{i-n+1}, \ldots, w_{i-1}) \]

 I visited San _____ put a distribution over the next word
 \[P(w|\text{visited San}) = \frac{\text{count(visited San, w)}}{\text{count(visited San)}} \]

 Maximum likelihood estimate of this 3-gram probability from a corpus

- Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B n-grams (all 5-grams occurring >40 times on the Web)
Smoothing N-gram Language Models

- What happens when we scale to longer contexts?

\[P(w|\text{to}) \quad \text{to occurs 1M times in corpus} \]
\[P(w|\text{go to}) \quad \text{go to occurs 50,000 times in corpus} \]
\[P(w|\text{to go to}) \quad \text{go to occurs 1500 times in corpus} \]
\[P(w|\text{want to go to}) \quad \text{want to go to: only 100 occurrences} \]

- Probability counts get very sparse, and we often want information from 5+ words away
Smoothing N-gram Language Models

I visited San ______ put a distribution over the next word

- Smoothing is very important, particularly when using 4+ gram models

\[P(w|\text{visited San}) = (1 - \lambda) \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, w)}{\text{count}(\text{San})} \]

- One technique is “absolute discounting:” subtract off constant k from numerator, set lambda to make this normalize ($k=1$ is like leave-one-out)

\[P(w|\text{visited San}) = \frac{\text{count}(\text{visited San}, w) - k}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, w)}{\text{count}(\text{San})} \]

- Smoothing schemes get very complex!
Neural Language Models

- Early work: feedforward neural networks looking at context

\[P(w_i | w_{i-n}, \ldots, w_{i-1}) \]

- Slow to train over lots of data!

- Still only look at a fixed window of information...can we use more?

Mnih and Hinton (2003)
RNN Language Modeling

\[P(w|\text{context}) = \text{softmax}(Wh_i) \]

- \(W \) is a \((\text{vocab size}) \times (\text{hidden size})\) matrix
Training RNNLMs

- Input is a sequence of words, output is those words shifted by one,
- Allows us to efficiently batch up training across time (one run of the RNN)
Training RNNLMs

- Total loss = sum of negative log likelihoods at each position
- Backpropagate through the network to simultaneously learn to predict next word given previous words at all positions

\[P(w | \text{context}) \]
\[\text{loss} = - \log P(w^* | \text{context}) \]
I saw the dog running in the park and it looked very excited to be there.

Why not one long chain? Output depends on previous timesteps.
Accuracy doesn’t make sense — predicting the next word is generally impossible so accuracy values would be very low

Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

\[
\frac{1}{n} \sum_{i=1}^{n} \log P(w_i | w_1, \ldots, w_{i-1})
\]

Perplexity: \(\exp(\text{average negative log likelihood})\). Lower is better

Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

Avg NLL (base e) = 1.242 Perplexity = 3.464
Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what’s used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7
- LSTM: PPL = 60-80 (depending on how much you optimize it)
- Melis et al.: many neural LM improvements from 2014-2017 are subsumed by just using the right regularization (right dropout settings). So LSTMs are pretty good
 - Main tricks: changing some tricky dropout settings + how params are structured (sizes, etc.)

 Merity et al. (2017), Melis et al. (2017)
Limitations of LSTM LMs

- Need some kind of pointing mechanism to repeat recent words

- Transformers can do this (will discuss later in the course)

- Scaling helps a lot! GPT-2 results:
 PTB perplexity = 65.85 with 117M params => 35.76 w/ 1542M params

Merity et al. (2016)
Applications of Language Modeling

- All generation tasks: translation, dialogue, text simplification, paraphrasing, etc.
- Grammatical error correction
- Predictive text
- Pretraining!
Pretraining / ELMo
Recall: Context-dependent Embeddings

- How to handle different word senses? One vector for *balls*

Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors.

Peters et al. (2018)
ELMo

- Key idea: language models can allow us to form useful word representations in the same way word2vec did

- Take a powerful language model, train it on large amounts of data, then use those representations in downstream tasks

 - Data: Wikipedia, books, crawled stuff from the web, ...

- What do we want our LM to look like?

Peters et al. (2018)
ELMo

- CNN over each word => RNN

Representation of *visited* (plus vectors from backwards LM)

4096-dim LSTMs w/ 512-dim projections

2048 CNN filters projected down to 512-dim

Peters et al. (2018)
How to apply ELMo?

- Take those embeddings and feed them into whatever architecture you want to use for your task

- *Frozen* embeddings: update the weights of your network but keep ELMo’s parameters frozen

- *Fine-tuning*: backpropagate all the way into ELMo when training your model

Peters, Ruder, Smith (2019)
Results: Frozen ELMo

<table>
<thead>
<tr>
<th>Task</th>
<th>Previous SOTA</th>
<th>Our baseline</th>
<th>ELMo + baseline</th>
<th>Increase (absolute/relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQuAD</td>
<td>Liu et al. (2017)</td>
<td>84.4</td>
<td>81.1</td>
<td>85.8</td>
</tr>
<tr>
<td>SNLI</td>
<td>Chen et al. (2017)</td>
<td>88.6</td>
<td>88.0</td>
<td>88.7 ± 0.17</td>
</tr>
<tr>
<td>SRL</td>
<td>He et al. (2017)</td>
<td>81.7</td>
<td>81.4</td>
<td>84.6</td>
</tr>
<tr>
<td>Coref</td>
<td>Lee et al. (2017)</td>
<td>67.2</td>
<td>67.2</td>
<td>70.4</td>
</tr>
<tr>
<td>NER</td>
<td>Peters et al. (2017)</td>
<td>91.93 ± 0.19</td>
<td>90.15</td>
<td>92.22 ± 0.10</td>
</tr>
<tr>
<td>SST-5</td>
<td>McCann et al. (2017)</td>
<td>53.7</td>
<td>51.4</td>
<td>54.7 ± 0.5</td>
</tr>
</tbody>
</table>

- Massive improvements across 5 benchmark datasets: question answering, natural language inference, semantic role labeling (discussed later in the course), coreference resolution, named entity recognition, and sentiment analysis

Peters et al. (2018)
How to apply ELMo?

<table>
<thead>
<tr>
<th>Pretraining</th>
<th>Adaptation</th>
<th>NER CoNLL 2003</th>
<th>SA SST-2</th>
<th>Nat. lang. inference SICK-E</th>
<th>Semantic textual similarity SICK-R</th>
<th>MRPC</th>
<th>STS-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skip-thoughts</td>
<td>❄️</td>
<td>-</td>
<td>81.8</td>
<td>62.9</td>
<td>86.6</td>
<td>75.8</td>
<td>71.8</td>
</tr>
<tr>
<td>ELMo</td>
<td>🔥</td>
<td>91.7</td>
<td>91.8</td>
<td>79.6</td>
<td>86.3</td>
<td>76.0</td>
<td>75.9</td>
</tr>
<tr>
<td></td>
<td>Δ=🔥-❄️</td>
<td>0.2</td>
<td>-0.6</td>
<td>-3.2</td>
<td>-3.3</td>
<td>-2.8</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

- How does frozen (❄️) vs. fine-tuned (🔥) compare?

- Recommendations:

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretrain</td>
<td>Adapt.</td>
</tr>
<tr>
<td>Any</td>
<td>❄️</td>
</tr>
<tr>
<td>Any</td>
<td>🔥</td>
</tr>
<tr>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>ELMo</td>
<td>Any</td>
</tr>
<tr>
<td>BERT</td>
<td>Any</td>
</tr>
</tbody>
</table>

Peters, Ruder, Smith (2019)
Why is language modeling a good objective?

- “Impossible” problem but bigger models seem to do better and better at distributional modeling (no upper limit yet)

- Successfully predicting next words requires modeling lots of different effects in text

 Context: My wife refused to allow me to come to Hong Kong when the plague was at its height and — “Your wife, Johanne? You are married at last?” Johanne grinned. “Well, when a man gets to my age, he starts to need a few home comforts.

 Target sentence: After my dear mother passed away ten years ago now, I became _____.

 Target word: lonely

- LAMBADA dataset (Papernot et al., 2016): explicitly targets world knowledge and very challenging LM examples

- Coreference, Winograd schema, and much more
Why is language modeling a good objective?

Zhang and Bowman (2018)
Why did this take time to catch on?

- Earlier version of ELMo by the same authors in 2017, but it was only evaluated on tagging tasks, gains were 1% or less
- Required: training on lots of data, having the right architecture, significant hyperparameter tuning
Probing ELMo

- From each layer of the ELMo model, attempt to predict something: POS tags, word senses, etc.
- Higher accuracy => ELMo is capturing that thing more strongly

<table>
<thead>
<tr>
<th>Model</th>
<th>F_1</th>
<th>Model</th>
<th>Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordNet 1st Sense Baseline</td>
<td>65.9</td>
<td>Collobert et al. (2011)</td>
<td>97.3</td>
</tr>
<tr>
<td>Raganato et al. (2017a)</td>
<td>69.9</td>
<td>Ma and Hovy (2016)</td>
<td>97.6</td>
</tr>
<tr>
<td>Iacobacci et al. (2016)</td>
<td>70.1</td>
<td>Ling et al. (2015)</td>
<td>97.8</td>
</tr>
<tr>
<td>CoVe, First Layer</td>
<td>59.4</td>
<td>CoVe, First Layer</td>
<td>93.3</td>
</tr>
<tr>
<td>CoVe, Second Layer</td>
<td>64.7</td>
<td>CoVe, Second Layer</td>
<td>92.8</td>
</tr>
<tr>
<td>biLM, First layer</td>
<td>67.4</td>
<td>biLM, First Layer</td>
<td>97.3</td>
</tr>
<tr>
<td>biLM, Second layer</td>
<td>69.0</td>
<td>biLM, Second Layer</td>
<td>96.8</td>
</tr>
</tbody>
</table>

Table 5: All-words fine grained WSD F_1. For CoVe and the biLM, we report scores for both the first and second layer biLSTMs.

Table 6: Test set POS tagging accuracies for PTB. For CoVe and the biLM, we report scores for both the first and second layer biLSTMs.
Takeaways

- Language modeling involves predicting the next word given context. Several techniques to do this, more later in the course.

- Learning a neural network to do this induces useful representations for other tasks, similar to word2vec/GloVe.

- Next time: syntactic parsing.