CS388: Natural Language Processing

Lecture 12: Dependency Parsing

Greg Durrett
Administrivia

- Project 1 graded
- Submission on Gradescope
- Final project proposals due next Thursday
Recall: Constituency

- Tree-structured syntactic analyses of sentences
- Nonterminals (NP, VP, etc.) as well as POS tags (bottom layer)
- Structured is defined by a CFG
Recall: PCFGs

<table>
<thead>
<tr>
<th>Grammar (CFG)</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOT → S</td>
<td>NN → interest</td>
</tr>
<tr>
<td>S → NP VP</td>
<td>NNS → raises</td>
</tr>
<tr>
<td>NP → DT NN</td>
<td>VBP → interest</td>
</tr>
<tr>
<td>NP → NN NNS</td>
<td>VBZ → raises</td>
</tr>
</tbody>
</table>

- Context-free grammar: symbols which rewrite as one or more symbols
- Lexicon consists of “preterminals” (POS tags) rewriting as terminals (words)
- CFG is a tuple \((N, T, S, R)\): \(N = \) nonterminals, \(T = \) terminals, \(S = \) start symbol (generally a special ROOT symbol), \(R = \) rules
- PCFG: probabilities associated with rewrites, normalize by source symbol
Recall: CKY

- Find $\text{argmax } P(T | x) = \text{argmax } P(T, x)$

- Dynamic programming: chart maintains the best way of building symbol X over span (i, j)

- Loop over all split points k, apply rules $X \rightarrow Y Z$ to build X in every possible way
Outline

- Dependency representation, contrast with constituency
- Graph-based dependency parsers
- Transition-based (shift-reduce) dependency parsers
- State-of-the-art parsers
Dependency Representation
Dependency Parsing

- Dependency syntax: syntactic structure is defined by these arcs
- Head (parent, governor) connected to dependent (child, modifier)
- Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

![Dependency Graph]

- POS tags same as before, usually run a tagger first as preprocessing
Dependency Parsing

- Still a notion of hierarchy! Subtrees often align with constituents

Diagram:
- VBD ran
- NN dog
- TO to
- NN house
- DT the
- DT the
Can label dependencies according to syntactic function

Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)
Constituency: several rule productions need to change
Dependency vs. Constituency: PP Attachment

- Dependency: one word (with) assigned a different parent

 the children ate the cake with a spoon

- More predicate-argument focused view of syntax

- “What’s the main verb of the sentence? What is its subject and object?” — easier to answer under dependency parsing
Constituency: ternary rule NP -> NP CC NP

Dependency vs. Constituency: Coordination
Dependency vs. Constituency: Coordination

- Dependency: first item is the head

 - Dependency:
 - **dogs** in houses **and** **cats**
 - [dogs in houses] and cats
 - Coordination:
 - dogs in **houses and cats**
 - dogs in [houses and cats]

- Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency

- Can also choose *and* to be the head

- In both cases, headword doesn’t really represent the phrase — constituency representation makes more sense
Stanford Dependencies

- Designed to be practically useful for relation extraction

Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas

Standard

Collapsed
Dependency vs. Constituency

- Dependency is often more useful in practice (models predicate argument structure)
- Slightly different representational choices:
 - PP attachment is better modeled under dependency
 - Coordination is better modeled under constituency
- Dependency parsers are easier to build: no “grammar engineering”, no unaries, easier to get structured discriminative models working well
- Dependency parsers are usually faster
- Dependencies are more universal cross-lingually
Universal Dependencies

- Annotate dependencies with the same representation in many languages

English

Bulgarian

Čeština

Schweizerdeutsch

http://universaldependencies.org/
Graph-Based Parsing
Defining Dependency Graphs

- Words in sentence \mathbf{x}, tree T is a collection of directed edges $(\text{parent}(i), i)$ for each word i
 - Parsing = identify parent(i) for each word
 - Each word has exactly one parent. Edges must form a projective tree

- Log-linear CRF (discriminative): $P(T|\mathbf{x}) = \exp \left(\sum_i w^T f(i, \text{parent}(i), \mathbf{x}) \right)$

- Example of a feature = $I[\text{head=to} \& \text{modifier=house}]$
Neural CRFs for dependency parsing: let $c =$ LSTM embedding of i, $p =$ LSTM embedding of parent(i). $score(i, \text{parent}(i), \mathbf{x}) = p^T U c$

LSTM looks at words and POS

Dozat and Manning (2017)
Generalizing CKY

- DP chart with three dimensions: **start**, **end**, and **head**, start <= head < end
- new score = chart(2, 5, 4) + chart(5, 7, 5) + edge score(4 -> 5)
- score(2, 7, 4) = max(score(2, 7, 4), new score)
- Many *spurious derivations*: can build the same tree in many ways...need a better algorithm
- Eisner’s algorithm is cubic time

4 = report
5 = on

2 -> 4 -> 5

wrote a long report on Mars
Evaluating Dependency Parsing

- UAS: unlabeled attachment score. Accuracy of choosing each word’s parent \((n \text{ decisions per sentence}) \)
- LAS: additionally consider label for each edge
- Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- Higher-order features from Koo parser: 93 UAS
- Best English results with neural CRFs (Dozat and Manning): 95-96 UAS
Shift-Reduce Parsing
Shift-Reduce Parsing

- Similar to deterministic parsers for compilers
 - Also called transition-based parsing
- A tree is built from a sequence of incremental decisions moving left to right through the sentence
- **Stack** containing partially-built tree, **buffer** containing rest of sentence
- Shifts consume the buffer, reduces build a tree on the stack
Shift-Reduce Parsing

ROOT

I ate some spaghetti bolognese

- Initial state: Stack: [ROOT] Buffer: [I ate some spaghetti bolognese]

- Shift: top of buffer -> top of stack

 - Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognese]

 - Shift 2: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]
Shift-Reduce Parsing

ROOT

I ate some spaghetti bolognese

- State: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]

- Left-arc (reduce): Let σ denote the stack, $\sigma|w_{-1}$ = stack ending in w_{-1}
 - “Pop two elements, add an arc, put them back on the stack”
 $\sigma|w_{-2}, w_{-1} \rightarrow \sigma|w_{-1}$ w_{-2} is now a child of w_{-1}

- State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese]
Arc-Standard Parsing

ROOT

I ate some spaghetti bolognese

- Start: stack contains [ROOT], buffer contains [I ate some spaghetti bolognese]
- Arc-standard system: three operations
 - Shift: top of buffer -> top of stack
 - Left-Arc: $\sigma|w_{-2}, w_{-1} \rightarrow \sigma|w_{-1}$, w_{-2} is now a child of w_{-1}
 - Right-Arc $\sigma|w_{-2}, w_{-1} \rightarrow \sigma|w_{-2}$, w_{-1} is now a child of w_{-2}
- End: stack contains [ROOT], buffer is empty []
- How many transitions do we need if we have n words in a sentence?
I ate some spaghetti bolognese.

- Could do the left arc later! But no reason to wait.
- Can’t attach ROOT <- ate yet even though this is a correct dependency!
Arc-Standard Parsing

I ate some spaghetti bolognese

[ROOT ate]
 ↓
 [ROOT ate some spaghetti]
 ↓
 [ROOT ate spaghetti]
 ↓
 [some spaghetti bolognese]
 ↓
 [some spaghetti bolognese]

S top of buffer -> top of stack
LA pop two, left arc between them
RA pop two, right arc between them
Arc-Standard Parsing

I ate some spaghetti bolognese

Stack consists of all words that are still waiting for right children, end with a bunch of right-arc ops

Final state:

S top of buffer -> top of stack
LA pop two, left arc between them
RA pop two, right arc between them
Building Shift-Reduce Parsers

-[ROOT] [I ate some spaghetti bolognese]

- How do we make the right decision in this case?
- Only one legal move (shift)

-[ROOT ate some spaghetti] [bolognese]

- How do we make the right decision in this case? (all three actions legal)
- Multi-way classification problem: shift, left-arc, or right-arc?

$$\arg\max_{a \in \{S, LA, RA\}} w^\top f(\text{stack, buffer, } a)$$
Features for Shift-Reduce Parsing

[ROOT ate some spaghetti] [bolognese]

- Features to know this should left-arc?

- One of the harder feature design tasks!

- In this case: the stack tag sequence VBD - DT - NN is pretty informative — looks like a verb taking a direct object which has a determiner in it

- Things to look at: top words/POS of buffer, top words/POS of stack, leftmost and rightmost children of top items on the stack
Training a Greedy Model

- Can turn a tree into a decision sequence a by building an oracle
- Train a classifier to predict the right decision using these as training data
- Training data assumes you made correct decisions up to this point and teaches you to make the correct decision, but what if you screwed up…

\[
\arg\max_{a \in \{S, LA, RA\}} w^\top f(\text{stack, buffer, } a)
\]
Greedy training

Greedy: 2n local training examples

Non-gold states unobserved during training: consider making bad decisions but don’t *condition* on bad decisions
Speed Tradeoffs

<table>
<thead>
<tr>
<th>Parser</th>
<th>Dev UAS</th>
<th>Dev LAS</th>
<th>Test UAS</th>
<th>Test LAS</th>
<th>Speed (sent/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>89.9</td>
<td>88.7</td>
<td>89.7</td>
<td>88.3</td>
<td>51</td>
</tr>
<tr>
<td>eager</td>
<td>90.3</td>
<td>89.2</td>
<td>89.9</td>
<td>88.6</td>
<td>63</td>
</tr>
<tr>
<td>Graph-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malt:sp</td>
<td>90.0</td>
<td>88.8</td>
<td>89.9</td>
<td>88.5</td>
<td>560</td>
</tr>
<tr>
<td>Malt:eager</td>
<td>90.1</td>
<td>88.9</td>
<td>90.1</td>
<td>88.7</td>
<td>535</td>
</tr>
<tr>
<td>Neural S-R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSTParser</td>
<td>92.1</td>
<td>90.8</td>
<td>92.0</td>
<td>90.5</td>
<td>12</td>
</tr>
<tr>
<td>Our parser</td>
<td>92.2</td>
<td>91.0</td>
<td>92.0</td>
<td>90.7</td>
<td>1013</td>
</tr>
</tbody>
</table>

- Many early-2000s constituency parsers were ~5 sentences/sec
- Using S-R used to mean taking a performance hit compared to graph-based, that’s no longer (quite as) true

Chen and Manning (2014)
State-of-the-art Dependency Parsers
Dependency Parsers

- 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
- 2010: Koo’s 3rd-order parser was SOTA for graph-based (~93 UAS)
- 2012: Maltparser was SOTA was for transition-based (~90 UAS)
- 2014: Chen and Manning got 92 UAS with transition-based neural model
- 2016: Improvements to Chen and Manning
Shift-Reduce with FFNNs

Softmax layer:
\[p = \text{softmax}(W_2 h) \]

Hidden layer:
\[h = (W^w_1 x^w + W^t_1 x^t + W^l_1 x^l + b_1)^3 \]

Input layer: \([x^w, x^t, x^l]\)

Configuration:
- Stack:
 - ROOT
 - has_VBZ
 - good JJ
- Buffer:
 - control_NN
 - nsubj
 - He_PRP

Chen and Manning (2014)
94.61 UAS on the Penn Treebank using a global transition-based system with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)

- Additional data harvested via “tri-training”, form of self-training

- Feedforward neural nets looking at words and POS associated with words in the stack / those words’ children / words in the buffer

- Feature set pioneered by Chen and Manning (2014), Google fine-tuned it
Can do shift-reduce for constituency as well, reduce operation builds constituents

Cross and Huang (2016)
Pre-trained Models

- Improves the neural CRF by using a transformer layer (self-attentive), character-level modeling, and ELMo

- 95.21 on Penn Treebank dev set — much better than past parsers! (~92-93)

- This constituency parser with BERT is one of the strongest today, or use a transition-based version due to Kitaev and Klein (2020)
Recap

- Shift-reduce parsing can work nearly as well as graph-based
- Arc-standard system for transition-based parsing
- Purely greedy or more “global” approaches
- Next time: semantic parsing