CS388: Natural Language Processing

Lecture 12:
Dependency
Parsing

~~ A\

Greg Durrett
TEXA

The University of Texas at Austin

Administrivia
» Project 1 graded

» Submission on Gradescope

» Final project proposals due next Thursday

Recall: Constituency

» Tree-structured syntactic analyses of sentences

» Nonterminals (NP, VP, etc.) as well as POS S
tags (bottom layer) TN
NP VP
\ N
» Structured is defined by a CFG PRP ypyz, PP
Sl"le | TN
ran N NP

| Py

to DT NN
| \

the building

Recall: PCFGs

Grammar (CFG) Lexicon
ROOT - S 1.0 NP —=NPPP 0.3 NN — interest 1.0
S —= NP VP 1.0 VP — VBP NP 0.7 NNS — raises 1.0
NP—-DTNN (0.2 VP—-VBPNPPP 0.3 VBP — interest 1.0

NP - NNNNS (0.5 PP—INNP 1.0 VBZ —raises 1.0

» Context-free grammar: symbols which rewrite as one or more symbols
» Lexicon consists of “preterminals” (POS tags) rewriting as terminals (words)

» CFGis atuple (N, T, S, R): N = nonterminals, T = terminals, S = start
symbol (generally a special ROOT symbol), R = rules

» PCFG: probabilities associated with rewrites, normalize by source symbol

Recall: CKY

» Find argmax P(T|x) = argmax P(T, x)

» Dynamic programming: chart maintains the
best way of building symbol X over

span (i, j)

» Loop over all split points k,
apply rules X ->Y Z to build

X in every possible way
He wrote a

long report on

Cocke-Kasami-Younger

Mars

QOutline

» Dependency representation, contrast with constituency
» Graph-based dependency parsers

» Transition-based (shift-reduce) dependency parsers

» State-of-the-art parsers

Dependency Representation

Dependency Parsing

» Dependency syntax: syntactic structure is defined by these arcs
» Head (parent, governor) connected to dependent (child, modifier)
» Each word has exactly one parent except for the ROOT symbol,
dependencies must form a directed acyclic graph

<7 N\

DT NN VBD TO DT NN
the dog ran to the

ROOT
house

» POS tags same as before, usually run a tagger first as preprocessing

Dependency Parsing

» Still a notion of hierarchy! Subtrees often align with constituents

VBD
ran
—
NN TO
dog to
DT «— E——]
the house
DT«
the

Dependency Parsing

» Can label dependencies according to syntactic function

» Major source of ambiguity is in the structure, so we focus on that more
(labeling separately with a classifier works pretty well)

pobj

nsubj prep

DT NN VBD TO DT NN
the dog ran to the house

Dependency vs. Constituency: PP Attachment

» Constituency: several rule productions need to change

S

NP VP
NP P PN
PN %nms/ VED NP
DT NNS VP PP | | |
‘ ‘ The children ate NP PP
The children [VED NP I NP N N

| ‘ DT NN IN NP

N N

DT i DT ‘
ae DT NN with DI NN the cake with DT NN

the cake a spoon a spoon

Dependency vs. Constituency: PP Attachment

» Dependency: one word (with) assigned a different parent

A

the children ate the cake with a spoon

» More predicate-argument focused view of syntax

» “What’s the main verb of the sentence? What is its subject and object?”
— easier to answer under dependency parsing

Dependency vs. Constituency: Coordination

» Constituency: ternary rule NP -> NP CC NP

NP NP
/’\ NP PP
NP cc NP Nl\ls
| | N {
NP/\PP and NNS | IN NP
| PN | dogs |
NNS IN NP cats m NP cc Np

o imn NNS _
dogs | NNS and NNS
houses | |
houses cats

Dependency vs. Constituency: Coordination

» Dependency: first item is the head

AN\

dogs in houses and cats

AN NN

dogs in houses and cats
[dogs in houses] and cats dogs in [houses and cats]
» Coordination is decomposed across a few arcs as opposed to being a
single rule production as in constituency
» Can also choose and to be the head

» In both cases, headword doesn’t really represent the phrase —
constituency representation makes more sense

Stanford Dependencies
» Designed to be practically useful for relation extraction

Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas

submitted

submitted
nsubjpass | auxpass prep /
nsubjpass Juxpass W
Bills were by N
re

l l Bills e Brownback
prep pobj
on Brownback ﬁmp on /m \2”(“
l pobj / nn \\‘up/m\ ports prep_on Senator Republican
ports Senator Republican &aul,uml '
/“ \\""” l’”‘"’ immigration Kansas
and immigration of
pobj
Standard l Collapsed

Dependency vs. Constituency

» Dependency is often more useful in practice (models predicate argument
structure)

» Slightly different representational choices:
» PP attachment is better modeled under dependency
» Coordination is better modeled under constituency

» Dependency parsers are easier to build: no “grammar engineering”, no
unaries, easier to get structured discriminative models working well

» Dependency parsers are usually faster

» Dependencies are more universal cross-lingually

Universal Dependencies

» Annotate dependencies with the same representation in many languages

puncts
obl)
E I h «nsubj:pass case
nglis (e o e \veRer] e e wou
TR RN G N EH AN 6
The dog was chased by the cat i
puncts
. nsubj:pass obl
Bulgarian “"‘““
(NOUNG (EROE @R L

npecneagaile ot KoTKaTa

nsubj:pass- punct
Czech 0525\ wouN) YPNCT

Kyueto ce

—

Pes byl honén kockou
punct
Swiss nsubipass e
1
Hunden]agades av katten

http://universaldependencies.org/

Graph-Based Parsing

Defining Dependency Graphs

» Words in sentence x, tree T is a collection of directed edges (parent(i), i)
for each word i
» Parsing = identify parent(i) for each word

» Each word has exactly one parent. Edges must form a projective tree

» Log-linear CRF (discriminative): P(T'|x) = exp Zwa(i, parent(), x)
» Example of a feature = I[head=to & modifier=house]

ROOT the dog ran the

Biaffine Neural Parsing

» Neural CRFs for dependency parsing: let ¢ = LSTM embedding of i, p =
LSTM embedding of parent(i). score(i, parent(i), x) = pTUc

D
]
&

Hlaredep) g1 grlarc)

-
@
(num words x hidden size) %@ . . % _
[@00]® DX [co0]
[@00]® [0
000 000

MLP: h(arc—dcp)’ plerc-head)
BiLSTM:r; [C000/0000]—{0eec]eeee]

root ROOT

LSTM looks at words and POS

H(arc-hcad) S

(num words x
num words)

i

00 000
[0000]0000]— 00000000
Kim NNP
Dozat and Manning (2017)

Embeddings: x;

Generalizing CKY

» DP chart with three dimensions: start, end, and head, start <= head < end

» new score = chart(2, 5, 4) + chart(5, 7, 5) + edge score(4 -> 5)

» score(2, 7, 4) = max(score(2, 7, 4), new score)

» Many spurious derivations:
can build the same tree in many
ways...need a better algorithm

» Eisner’s algorithm is cubic time

wrote a long report on Mars
2 4 5

Evaluating Dependency Parsing

» UAS: unlabeled attachment score. Accuracy of choosing each word’s
parent (n decisions per sentence)

» LAS: additionally consider label for each edge

» Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
» Higher-order features from Koo parser: 93 UAS

» Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

Shift-Reduce Parsing

Shift-Reduce Parsing

» Similar to deterministic parsers for compilers

» Also called transition-based parsing

» Atree is built from a sequence of incremental decisions moving
left to right through the sentence

» Stack containing partially-built tree, buffer containing rest of
sentence

» Shifts consume the buffer, reduces build a tree on the stack

Shift-Reduce Parsing
ROOT
’.\//\‘/—\
| ate some spaghetti bolognese
» Initial state: Stack: [ROOT] Buffer: [I ate some spaghetti bolognese]
» Shift: top of buffer -> top of stack
» Shift 1: Stack: [ROOTI] Buffer: [ate some spaghetti bolognese]

» Shift 2: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]

Shift-Reduce Parsing

ROOT
A//\‘/—\

| ate some spaghetti bolognese

» State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]

» Left-arc (reduce): Let g denote the stack, O’|w_1 = stack ending in w1

» “Pop two elements, add an arc, put them back on the stack”

|0]w_2,w_1|—>|a|w_1| w_o is now a child of w_y

» State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese]
¥

Arc-Standard Parsing

ROOT
K‘\/—A/_\/_\

| ate some spaghetti bolognese

» Start: stack contains [ROOT], buffer contains [l ate some spaghetti bolognese]

» Arc-standard system: three operations
» Shift: top of buffer -> top of stack

» Left-Arc: |a|w,2, w,1|—>|a|w,1[w_sg is now a child of w_;

» Right-Arc |U|w_2, w—1| —>|o]w_2| , W—1is now a child of w—2

» End: stack contains [ROOT], buffer is empty []

» How many transitions do we need if we have n words in a sentence?

Arc-Standard Parsing

ROOT S top of buffer -> top of stack
NS LA pop two, left arc between them

| ate some spaghetti bolognese
pag 8 RA pop two, right arc between them

[I ate some spaghetti bolognese]

[ROOT]

[ROOT 1] S [ate some spaghetti bolognese]
[ROOT | ate]] [some spaghetti bolognese]
[ROOT aie] [some spaghetti bolognese]

|
» Could do the left arc later! But no reason to wait

» Can’t attach ROOT <- ate yet even though this is a correct dependency!

Arc-Standard Parsing

ROOT S top of buffer -> top of stack
NS LA pop two, left arc between them

| ate some spaghetti bolognese
pag & RA pop two, right arc between them

[ROOQT ate] [some spaghetti bolognese]
¥

[[«]

[ROOT ate some spaghetti] [bolognese]
¥

=l

[ROOT aite spaghetti] [bolognese]
¥
| some

Arc-Standard Parsing

ROOT S top of buffer -> top of stack
NS LA pop two, left arc between them

| ate some spaghetti bolognese
pag & RA pop two, right arc between them

[ROQOT ate spaghetti bolognese]]

+ +
| some

» Stack consists of all words that are
still waiting for right children, end
E with a bunch of right-arc ops

[ROOT ate spaghetti] . .
f T~ Final state:
some bolognese [ROOT] [
[ROOT ate] E[] Thate :
¥ “3paghetti ¢| sp$agh\e‘tt|
I bolognese
some bolognese some

Building Shift-Reduce Parsers

[ROOT] [l ate some spaghetti bolognese]
» How do we make the right decision in this case?

» Only one legal move (shift)

[ROOT ate some spaghetti] [bolognese]
¥

|
» How do we make the right decision in this case? (all three actions legal)

» Multi-way classification problem: shift, left-arc, or right-arc?

argmaxae{SVLA_’RA}wT f (stack, buffer, a)

Features for Shift-Reduce Parsing

[ROOT ate some spaghetti] [bolognese]
¥

|
» Features to know this should left-arc?

» One of the harder feature design tasks!

» In this case: the stack tag sequence VBD - DT - NN is pretty informative
— looks like a verb taking a direct object which has a determiner in it

» Things to look at: top words/POS of buffer, top words/POS of stack,
leftmost and rightmost children of top items on the stack

Training a Greedy Model

[ROOT ate some spaghetti] [bolognese]
v

I
argmaxaE{S’LA,RA}wTf(stack, buffer, a)
» Can turn a tree into a decision sequence a by building an oracle
» Train a classifier to predict the right decision using these as training data

» Training data assumes you made correct decisions up to this point
and teaches you to make the correct decision, but what if you
screwed up...

Greedy training

State space

Start stat

» Greedy: 2n local training examples
» Non-gold states unobserved during training: consider
making bad decisions but don’t condition on bad decisions

Speed Tradeoffs

Parser Dev Test Speed
UAS LAS| UAS LAS| (sent/s)

Unostimied s d standard [89.9 88.7/897 883 5l
P eager 90.3 89.2|89.9 88.6| 63
- Malt:sp 90.0 888|899 885| 560
Optimized S-R Y Malt-cager | 90.1 889 90.1 88.7| 535
Graph-based MSTParser | 92.1 90.8| 92.0 90.5 12
Neural S-R Our parser | 92.2 91.0| 92.0 90.7| 1013

» Many early-2000s constituency parsers were ~5 sentences/sec

» Using S-R used to mean taking a performance hit compared to
graph-based, that’s no longer (quite as) true Chen and Manning (2014)

State-of-the-art Dependency Parsers

Dependency Parsers

» 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
» 2010: Koo’s 3rd-order parser was SOTA for graph-based (~93 UAS)

» 2012: Maltparser was SOTA was for transition-based (~90 UAS)

» 2014: Chen and Manning got 92 UAS with transition-based neural
model

» 2016: Improvements to Chen and Manning

Shift-Reduce with FFNNs

Softmax layer: [.]
p = softmax(Wsh)

Hidden layer: [.]
h= WPz + Wizt + Wizl + b)?

Input layer: [z, z", '] [

~

words POS tags

arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ control_NN

< nsubj
He_PRP

Chen and Manning (2014)

Parsey McParseFace (a-k.a. SyntaxNet)

» 94.61 UAS on the Penn Treebank using a global transition-based system
with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)

» Additional data harvested via “tri-training”, form of self-training

» Feedforward neural nets looking at words and POS associated with
words in the stack / those words’ children / words in the buffer

» Feature set pioneered by Chen and Manning (2014), Google fine-tuned it

Andor et al. (2016)

Shift-Reduce Constituency

S

P steps | structural action label action | stack after bracket
NP VP 1-2 sh(I/PRP) label-NP 0/ oNPy

| — 34 sh(do/MD) nolabel 0109
PRP MD VBP S 5-6 sh(like/VBP) nolabel 00109/

‘ | | | 7-8 comb nolabel 03

ol 1do .like VP

9-10 fsh(eating/VBG) nolabel 0130y

T
VBG NP 11-12 [sh(fish/NN) label-NP | g/ 35 | 4NPs
| | 13-14/| comb label-S-VP | g/ /35 3Ss, 3VPs
seating NN 15-1¢ | comb label-VP | o 1VPs
. ﬁ;h i 17-1 comb label-S 025 0S5
(a) gold parse tree (b) static oracle actions

combine with no label for ternary rules

» Can do shift-reduce for constituency as well, reduce operation

builds constituents
Cross and Huang (2016)

Pre-trained Models

Output
» Improves the neural CRF by using a

(VP(VBD fled) (NP (DT the) (NN marke! £)

transformer layer (self-attentive),

character-level modeling, and ELMo Decoder

S

» 95.21 on Penn Treebank dev set — much

better than past parsers! (~92-93) Encoder

» This constituency parser with BERT is
one of the strongest today, or use a
transition-based version due to Kitaev
and Klein (2020)

Input

and fled the market in
cC VBD DT NN IN

Kitaev and Klein (2018)

Recap
» Shift-reduce parsing can work nearly as well as graph-based
» Arc-standard system for transition-based parsing
» Purely greedy or more “global” approaches

» Next time: semantic parsing

