CS388: Natural Language Processing

Lecture 12: Dependency Parsing

Greg Durrett

Administrivia

- ▶ Project 1 graded
- ▶ Submission on Gradescope
- ▶ Final project proposals due next Thursday

Grammar (CFG)

Recall: Constituency

- ▶ Tree-structured syntactic analyses of sentences
- Nonterminals (NP, VP, etc.) as well as POS tags (bottom layer)
- Structured is defined by a CFG

Recall: PCFGs

$ROOT \to S$	$1.0 \text{ NP} \rightarrow \text{NP PP}$	0.3	$NN \to interest$	1.0
$S \to NPVP$	1.0 VP → VBP NP	0.7	NNS → raises	1.0
$NP \rightarrow DT NN$	$0.2 \text{ VP} \rightarrow \text{VBP NP PP}$	0.3	VBP → interest	1.0
$NP \rightarrow NN NNS$	$0.5 \text{ PP} \rightarrow \text{IN NP}$	1.0	VBZ → raises	1.0

Lexicon

- ▶ Context-free grammar: symbols which rewrite as one or more symbols
- ▶ Lexicon consists of "preterminals" (POS tags) rewriting as terminals (words)
- ➤ CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules
- ▶ PCFG: probabilities associated with rewrites, normalize by source symbol

Outline

- Dependency representation, contrast with constituency
- ▶ Graph-based dependency parsers
- ▶ Transition-based (shift-reduce) dependency parsers
- ▶ State-of-the-art parsers

Dependency Representation

Dependency Parsing

- ▶ Dependency syntax: syntactic structure is defined by these arcs
- ▶ Head (parent, governor) connected to dependent (child, modifier)
- ▶ Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

▶ POS tags same as before, usually run a tagger first as preprocessing

Dependency Parsing

> Still a notion of hierarchy! Subtrees often align with constituents

Dependency Parsing

- ▶ Can label dependencies according to syntactic function
- ▶ Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)

Dependency vs. Constituency: PP Attachment

Constituency: several rule productions need to change

Dependency vs. Constituency: PP Attachment

▶ Dependency: one word (with) assigned a different parent

the children ate the cake with a spoon

- ▶ More predicate-argument focused view of syntax
- "What's the main verb of the sentence? What is its subject and object?"
 - easier to answer under dependency parsing

Dependency vs. Constituency: Coordination

▶ Constituency: ternary rule NP -> NP CC NP

Dependency vs. Constituency: Coordination

▶ Dependency: first item is the head

[dogs in houses] and cats

dogs in [houses and cats]

- Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency
- ▶ Can also choose and to be the head
- In both cases, headword doesn't really represent the phrase constituency representation makes more sense

Dependency vs. Constituency

- Dependency is often more useful in practice (models predicate argument structure)
- Slightly different representational choices:
 - ▶ PP attachment is better modeled under dependency
 - Coordination is better modeled under constituency
- ▶ Dependency parsers are easier to build: no "grammar engineering", no unaries, easier to get structured discriminative models working well
- ▶ Dependency parsers are usually faster
- > Dependencies are more universal cross-lingually

Graph-Based Parsing

Generalizing CKY

- ▶ DP chart with three dimensions: start, end, and head, start <= head < end
- new score = chart(2, 5, 4) + chart(5, 7, 5) + edge score(4 -> 5)
- Many spurious derivations: can build the same tree in many ways...need a better algorithm
- ▶ Eisner's algorithm is cubic time

4 = report

Evaluating Dependency Parsing

- ▶ UAS: unlabeled attachment score. Accuracy of choosing each word's parent (*n* decisions per sentence)
- ▶ LAS: additionally consider label for each edge
- ▶ Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- ▶ Higher-order features from Koo parser: 93 UAS
- ▶ Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

Shift-Reduce Parsing

- Similar to deterministic parsers for compilers
 - ▶ Also called transition-based parsing
- A tree is built from a sequence of incremental decisions moving left to right through the sentence
- Stack containing partially-built tree, buffer containing rest of sentence
- ▶ Shifts consume the buffer, reduces build a tree on the stack

Shift-Reduce Parsing

ROOT I ate some spaghetti bolognese

- ▶ Initial state: Stack: [ROOT] Buffer: [I ate some spaghetti bolognese]
- ▶ Shift: top of buffer -> top of stack
 - ▶ Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognese]
 - ▶ Shift 2: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]

Shift-Reduce Parsing

- ▶ State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]
- ullet Left-arc (reduce): Let σ denote the stack, $\sigma|w_{-1}$ = stack ending in w₋₁
 - "Pop two elements, add an arc, put them back on the stack" $\sigma|w_{-2},w_{-1}| \to \sigma|w_{-1}| w_{-2}$ is now a child of w_{-1}
- ➤ State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese] ↓

Arc-Standard Parsing

ROOT I ate some spaghetti bolognese

- ▶ Start: stack contains [ROOT], buffer contains [I ate some spaghetti bolognese]
- ▶ Arc-standard system: three operations
 - ▶ Shift: top of buffer -> top of stack
 - \blacktriangleright Left-Arc: $\sigma|w_{-2},w_{-1}$ \to $\sigma|w_{-1}$, w_{-2} is now a child of w_{-1}
 - ullet Right-Arc $\sigma|w_{-2},w_{-1}$ o $\sigma|w_{-2}$, w_{-1} is now a child of w_{-2}
- ▶ End: stack contains [ROOT], buffer is empty []
- ▶ How many transitions do we need if we have n words in a sentence?

Arc-Standard Parsing

ROOT

I ate some spaghetti bolognese

- S top of buffer -> top of stack
- LA pop two, left arc between them
- RA pop two, right arc between them

[ROOT] S S [ROOT I ate] [ROOT ate]

- [I ate some spaghetti bolognese]
- [ate some spaghetti bolognese]
- [some spaghetti bolognese]
- [some spaghetti bolognese]
- ▶ Could do the left arc later! But no reason to wait
- ► Can't attach ROOT <- ate yet even though this is a correct dependency!

Training a Greedy Model

[ROOT ate some spaghetti] [bolognese]

 $\operatorname{argmax}_{a \in \{ \mathcal{S}, \mathcal{LA}, \mathcal{RA} \}} w^{\top} f(\operatorname{stack}, \operatorname{buffer}, a)$

- ▶ Can turn a tree into a decision sequence **a** by building an *oracle*
- ▶ Train a classifier to predict the right decision using these as training data
- ▶ Training data assumes you made correct decisions up to this point and teaches you to make the correct decision, but what if you screwed up...

Speed Tradeoffs

Parse		Dorgor	De	Dev		st	Speed
		raisei	UAS	LAS	UAS	LAS	(sent/s)
Unoptimized S-R	\int_{0}^{∞}	standard	89.9	88.7	89.7	88.3	51
	Ĵ	eager	90.3	89.2	89.9	88.6	63
Optimized S-R	\int_{0}^{∞}	Malt:sp	90.0	88.8	89.9	88.5	560
	Į	Malt:eager	90.1	88.9	90.1	88.7	535
Graph-based	{ `	MSTParser	92.1	90.8	92.0	90.5	12
Neural S-R	$\{ \]$	Our parser	92.2	91.0	92.0	90.7	1013

- ▶ Many early-2000s constituency parsers were ~5 sentences/sec
- Using S-R used to mean taking a performance hit compared to graph-based, that's no longer (quite as) true
 Chen and Manning (2014)

State-of-the-art Dependency Parsers

Dependency Parsers

- ▶ 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
- ▶ 2010: Koo's 3rd-order parser was SOTA for graph-based (~93 UAS)
- ▶ 2012: Maltparser was SOTA was for transition-based (~90 UAS)
- 2014: Chen and Manning got 92 UAS with transition-based neural model
- ▶ 2016: Improvements to Chen and Manning

Parsey McParseFace (a.k.a. SyntaxNet)

- ▶ 94.61 UAS on the Penn Treebank using a global transition-based system with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)
 - ▶ Additional data harvested via "tri-training", form of self-training
- ▶ Feedforward neural nets looking at words and POS associated with words in the stack / those words' children / words in the buffer
- ▶ Feature set pioneered by Chen and Manning (2014), Google fine-tuned it

Andor et al. (2016)

Shift-Reduce Constituency

combine with no label for ternary rules

 Can do shift-reduce for constituency as well, reduce operation builds constituents

Cross and Huang (2016)

Pre-trained Models

- Improves the neural CRF by using a transformer layer (self-attentive), character-level modeling, and ELMo
- ▶ 95.21 on Penn Treebank dev set much better than past parsers! (~92-93)
- This constituency parser with BERT is one of the strongest today, or use a transition-based version due to Kitaev and Klein (2020)

Kitaev and Klein (2018)

Recap

- ▶ Shift-reduce parsing can work nearly as well as graph-based
- ▶ Arc-standard system for transition-based parsing
- ▶ Purely greedy or more "global" approaches
- ▶ Next time: semantic parsing