CS388: Natural Language Processing

Lecture 14: Semantics / Seq2seq1

Greg Durrett

Final project proposals due Thursday; can exceed 1 page if needed

P2 released Thursday, due three weeks after

Administrivia

- Dependency syntax: syntactic structure is defined by dependencies Head (parent, governor) connected to dependent (child, modifier) Each word has exactly one parent except for the ROOT symbol Dependencies must form a directed acyclic graph

Recall: Dependencies

- State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]
- Left-arc (reduce operation): Let σ denote the stack
 - "Pop two elements, add an arc, put them back on the stack"

$$\sigma|w_{-2},w_{-1}
ightarrow\sigma|w_{-1}$$
, w

Train a classifier to make (shift, left-arc, right-arc) decisions sequentially — that classifier can parse sentences for you

 v_{-2} is now a child of w_{-1}

- Classification, then sequences, then trees
- Now we can understand sentences in terms of tree structures as well
- Why is this useful? What does this allow us to do?
- We're going to see how parsing can be a stepping stone towards more formal representations of language meaning. We'll contrast with these approaches when we revisit the same problems later with neural nets.

Where are we now?

Today

Montague semantics:

Model theoretic semantics

Compositional semantics with first-order logic

CCG parsing for database queries

Seq2seq semantic parsing

Model Theoretic Semantics

- Key idea: can ground out natural language expressions in settheoretic expressions called *models* of those sentences
- Natural language statement S => interpretation of S that models it She likes going to that restaurant
 - Interpretation: defines who she and that restaurant are, make it able to be concretely evaluated with respect to a world
- Entailment (statement A implies statement B) reduces to: in all worlds where A is true, B is true
- Our modeling language is first-order logic

Model Theoretic Semantics

First-order Logic

Powerful logic formalism including things like entities, relations, and quantifications

- \blacktriangleright sings is a *predicate* (with one argument), function f: entity \rightarrow true/false
- sings(Lady Gaga) = true or false, have to execute this against some database (world)
- Quantification: "forall" operator, "there exists" operator $\forall x sings(x) \lor dances(x) \rightarrow performs(x)$ "Everyone who sings or dances performs"

Lady Gaga sings

Montague Semantics

- Sentence expresses something about the world which is either true or false
- Denotation: evaluation of some expression against this database

[[Lady Gaga]] = e470denotation of this string is an entity

- Alias Birthdate Sings? Name 3/28/1986 e470 Stefani Germanotta Lady Gaga 10/17/1972 Eminem Т
 - Database containing entities, predicates, etc.

- [[sings(e470)]] = True
- denotation of this expression is T/F

Montague Semantics

We can use the syntactic parse as a bridge to the lambda-calculus representation, build up a logical form (our model) compositionally

- function application: apply this to e470

- takes one argument (y, the entity) and returns a logical form sings(y)

Parses to Logical Forms

$\lambda y. sings(y) \wedge dances(y)$ VP

VBP

dances

VP: $\lambda y. a(y) \wedge b(y) \rightarrow VP: \lambda y. a(y) CC VP: \lambda y. b(y)$

Function takes two arguments: first x (date), then y (entity)

• How to handle tense: should we indicate that this happened in the past?

$\lambda y. born(y, 3/28/1986)$ $\lambda y. born(y, 3/28/1986)$ NP

March 28, 1986

Tricky things

- Adverbs/temporality: Lady Gaga sang well yesterday sings(Lady Gaga, time=yesterday, manner=well) "Neo-Davidsonian" view of events: things with many properties: $\exists e. type(e, sing) \land agent(e, e470) \land manner(e, well) \land time(e, ...)$ Quantification: Everyone is friends with someone $\exists y \forall x \text{ friend}(x, y) \quad \forall x \exists y \text{ friend}(x, y)$ (one friend) (different friends)
 - Same syntactic parse for both! So syntax doesn't resolve all ambiguities
- Indefinite: Amy ate a waffle $\exists w. waffle(w) \land ate(Amy,w)$
- Generic: *Cats eat mice* (all cats eat mice? most cats? some cats?)

- For question answering, syntactic parsing doesn't tell you everything you want to know, but indicates the right structure
- Solution: semantic parsing: many forms of this task depending on semantic formalisms
- CCG parsers can produce these kinds of expressions, which can be used for database querying/question answering

Semantic Parsing

CCG Parsing

- Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- Parallel derivations of syntactic parse and lambda calculus expression
- Syntactic categories (for this lecture): S, NP, "slash" categories
- S\NP: "if I combine with an NP on my left side, I form a sentence" — verb
- When you apply this, there has to be a parallel instance of function application on the semantics side

Combinatory Categorial Grammar

- Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
- Syntactic categories (for this lecture): S, NP, "slash" categories
 - S\NP: "if I combine with an NP on my left side, I form a sentence" verb
 - (S\NP)/NP: "I need an NP on my right and then on my left" verb with a direct object

Combinatory Categorial Grammar

What states $\frac{(S/(S \setminus NP))}{N} \qquad N$ $\lambda f. \lambda g. \lambda x. f(x) \wedge g(x) \qquad \lambda x. state(x)$

"What" is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas)

CCG Parsing

Zettlemoyer and Collins (2005)

- form a sentence. S\NP is basically a verb phrase (border Texas)
- picking the right lexicon entries

CCG Parsing

S $\lambda x.state(x) \wedge borders(x, texas)$

"What" is a very complex type: needs a noun and needs a S\NP to

Lexicon is highly ambiguous — all the challenge of CCG parsing is in

Zettlemoyer and Collins (2005)

Show me	flights	
S/N λf.f	N λx.flight(x)	λ

"to" needs an NP (destination) and N (parent)

CCG Parsing to

$(N \setminus N) / NP$ NP $\lambda y \cdot \lambda f \cdot \lambda x \cdot f(x) \wedge to(x, y)$ PRG

N\N $\lambda f. \lambda x. f(x) \wedge to(x, PRG)$

Ν $\lambda x.flight(x) \wedge to(x, PRG)$

S $\lambda x.flight(x) \wedge to(x, PRG)$

Slide credit: Dan Klein

Prague

Training data looks like pairs of sentences and logical forms What states border Texas $\lambda x. state(x) \wedge borders(x, e89)$ Problem: we don't know the derivation • Texas corresponds to NP $| e^{89}$ in the logical form (easy to figure out) What corresponds to $(S/(S\setminus NP))/N \mid \lambda f \cdot \lambda g \cdot \lambda x \cdot f(x) \wedge g(x)$ How do we infer that without being told it? Building these parsers is very hard...let's try a different approach!

Building CCG Parsers

Zettlemoyer and Collins (2005)

Encoder-Decoder Models

Encoder-Decoder

- output sequence of tokens
- Semantic parsing:
- What states border Texas $\longrightarrow \lambda x$ state(x) \wedge borders(x, e89)
- Syntactic parsing

(but what if we produce an invalid tree or one with different words?) (3)

framework as well — our examples will be MT for now

Can view many tasks as mapping from an input sequence of tokens to an

The dog ran ----- (S (NP (DT the) (NN dog)) (VP (VBD ran))

Machine translation, summarization, dialogue can all be viewed in this

Encode a sequence into a fixed-sized vector

Now use that vector to produce a series of tokens as output from a separate LSTM decoder

Encoder-Decoder

Sutskever et al. (2014)

Follow \sim

It's not an ACL tutorial on vector representations of meaning if the In the words of Ray Mooney... least one Ray Mooney quote.

\$&!*ing vector!"

A Transduction Bottleneck

Single vector re sentences cause_____

- Training focusses on learning marginal language model of target language first.
- Longer input sequences cause compressive loss.
- Encoder gets significantly diminished gradient.

In the words of Ray Mooney...

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!" Yes, the censored-out swearing is copied verbatim.

Target sequence

Source sequence

12:27 AM - 11 Jul 2017

20 Retweets 127 Likes 🛛 🌑 🚳 🤭 🕵 🗐 🌍 🏹 🦉 🌍

Encoder-Decoder

"You can't cram the meaning of a whole %&!\$ing sentence into a single

Yes, the censored-out swearing is copied verbatim.

Is this true? Sort of...we'll come back to this later

W size is vocab x hidden state, softmax over entire vocabulary

Model

Generate next word conditioned on previous word as well as hidden state

 $P(y_i | \mathbf{x}, y_1, \dots, y_{i-1}) = \operatorname{softmax}(Wh)$ $P(\mathbf{y}|\mathbf{x}) = \prod P(y_i|\mathbf{x}, y_1, \dots, y_{i-1})$ $\dot{l} = 1$

Decoder has separate parameters from encoder, so this can learn to be a language model (produce a plausible next word given current one)

- and then feed that to the next RNN state
- input for the next state
- Decoder is advanced one state at a time until [STOP] is reached

Inference

Generate next word conditioned on previous word as well as hidden state

During inference: need to compute the argmax over the word predictions

Need to actually evaluate computation graph up to this point to form

Implementing Encoder-Decoder Models

- encoders for classification/tagging tasks

Implementing seq2seq Models

Encoder: consumes sequence of tokens, produces a vector. Analogous to

Decoder: separate module, single cell. Takes two inputs: hidden state (vector h or tuple (h, c)) and previous token. Outputs token + new state

One loss term for each target-sentence word, feed the correct word regardless of model's prediction (called "teacher forcing")

Training

Training: Scheduled Sampling

Model needs to do the right thing even with its own predictions

- the model's prediction
- Starting with p = 1 (teacher forcing) and decaying it works best
- "Right" thing: train with reinforcement learning

Scheduled sampling: with probability p, take the gold as input, else take

Bengio et al. (2015)

- Sentence lengths vary for both encoder and decoder:
 - Typically pad everything to the right length and use a mask or indexing to access a subset of terms
- Encoder: looks like what you did in Mini 2
- Decoder: execute one step of computation at a time, so computation graph is formulated as taking one input + hidden state
 - Test time: do this until you generate the stop token
 - Training: do this until you reach the gold stopping point

Implementation Details

- Batching is pretty tricky: decoder is across time steps, so you probably want your label vectors to look like [num timesteps x batch size x num labels], iterate upwards by time steps
- Beam search: can help with lookahead. Finds the (approximate) highest scoring sequence: $\operatorname{argmax}_{\mathbf{v}}$

i=1

Implementation Details (cont'd)

$$P(y_i|\mathbf{x}, y_1, \ldots, y_{i-1})$$

Keep both *film* states! Hidden state vectors are different

Beam Search

- What's the basic abstraction here?
 - Encoder: sentence -> vector
 - Decoder: hidden state, output prefix -> new hidden state, new output
 - OR: sentence, output prefix -> new output (more general)
- Wide variety of models can apply here: CNN encoders, decoders can be any autoregressive model including certain types of CNNs
- Transformer: another model discussed next lecture

Other Architectures

- Can represent meaning with first order logic and lambda calculus
- interpret language into lambda-calculus expressions
- seq2seq models provide an easier way to do this
- Next time: continue seq2seq semantic parsing, discuss attention

Can bridge syntax and semantics and create semantic parsers that can