CS388: Natural Language Processing

Lecture 14:
Semantics /
Seqg2seq |

Greg Durrett

Administrivia
» Final project proposals due Thursday; can exceed 1 page if needed

» P2 released Thursday, due three weeks after

Recall: Dependencies

» Dependency syntax: syntactic structure is defined by dependencies
» Head (parent, governor) connected to dependent (child, modifier)
» Each word has exactly one parent except for the ROOT symbol
» Dependencies must form a directed acyclic graph

7 N

DT NN VBD TO DT NN
the dog ran to the house

ROOT

Recall: Shift-Reduce Parsing

ROOT
A/f\/\

| ate some spaghetti bolognese

» State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]

» Left-arc (reduce operation): Let o denote the stack

» “Pop two elements, add an arc, put them back on the stack”

O|w_2,w_1 — O'|w_1, w_o isnhow a child of w_1

» Train a classifier to make (shift, left-arc, right-arc) decisions
sequentially — that classifier can parse sentences for you

Where are we now?

» Classification, then sequences, then trees

» Now we can understand sentences in terms of tree structures as well

» Why is this useful? What does this allow us to do?

» We're going to see how parsing can be a stepping stone towards more
formal representations of language meaning. We’ll contrast with these
approaches when we revisit the same problems later with neural nets.

Today

» Montague semantics:

» Model theoretic semantics

» Compositional semantics with first-order logic
» CCG parsing for database queries

» Seq2seq semantic parsing

Model Theoretic Semantics

Model Theoretic Semantics

» Key idea: can ground out natural language expressions in set-
theoretic expressions called models of those sentences

» Natural language statement S => interpretation of S that models it
She likes going to that restaurant

» Interpretation: defines who she and that restaurant are, make it able to
be concretely evaluated with respect to a world

» Entailment (statement A implies statement B) reduces to: in all worlds
where A is true, B is true

» Our modeling language is first-order logic

First-order Logic

» Powerful logic formalism including things like entities, relations, and
guantifications

Lady Gaga sings
» sings is a predicate (with one argument), function f: entity — true/false

» sings(Lady Gaga) = true or false, have to execute this against some
database (world)

» Quantification: “forall” operator, “there exists” operator

VX sings(x) v dances(x) — performs(x)

“Everyone who sings or dances performs”

Montague Semantics

S
/\ Id Name Alias Birthdate Sings?

ed 70 Stefani Germanotta Lady Gaga 3/28/1986 T
NP VP .
/\ ‘ e728 Marshall Mathers Eminem 10/17/1972 T

NNP NNP VBP

Database containing entities, predicates, etc.
Lady Gaga sings > P

» Sentence expresses something about the world which is either true or
false

» Denotation: evaluation of some expression against this database
[[Lady Gaga]l] = €470 [[sings(ed470)]] = True

denotation of this string is an entity denotation of this expression is T/F

Montague Semantics

sings(e470)
S function application: apply this to e470
1D /\
ed70 NP VP Ay. sings(y)

N\ \

NNP NNP VBP
Lady Gaga sings Av. sings(v)

takes one argument (y, the entity) and
returns a logical form sings (vy)

» We can use the syntactic parse as a bridge to the lambda-calculus
representation, build up a logical form (our model) compositionally

/,~ '-‘ QR ‘ 0 \/"\\\ /\
[N/ \e\
(= | A °
{’.f‘/‘\ D | =2 1>]
\&\ 2 * /]
\\\‘ i\ R "‘ //
. / AUS \/ }/,/../

sings(e470) A dances(e4d70)
S

T

e470 NP VP Ay. sings(y) A dances(y)
e
N VP CC VP
NNP NNP
Lady Gaga and ‘

VBP vVBP
sings dances

Ay. sings(y) Ay. dances(y)

» General rules: VP: Ay. aly) A b(y) ->VP: Ay. a(y) CCVP: Ay. b(y)
S: f(x) ->NP: x VP: f

Parses to Logical Forms

born(e470,3/28/1986)
S

T

e470 NP VP Ay. born(y, 3/28/1986)
/\ /\
VP Ay. born(y, 3/28/1986)

VBD
NNP NNP —~
Lady Gaga Was NP

VBN _—
born March 28, 1986
Ax.Ay. born(y,x) 3/28/1986
» Function takes two arguments: first x (date), then y (entity)
» How to handle tense: should we indicate that this happened in the past?

Tricky things

» Adverbs/temporality: Lady Gaga sang well yesterday
sings(Lady Gaga, time=yesterday, manner=well)

» “Neo-Davidsonian” view of events: things with many properties:
de. type(e,sing) A agent(e,ed470) A manner(e,well) A time(e,..)

» Quantification: Everyone is friends with someone
dy Vx friend(x,Vy) Vx dy friend(x,Vv)
(one friend) (different friends)

» Same syntactic parse for both! So syntax doesn't resolve all ambiguities

» Indefinite: Amy ate a waffle dw. waffle(w) A ate(Amy,w)

» Generic: Cats eat mice (all cats eat mice? most cats? some cats?)

Semantic Parsing

» For question answering, syntactic parsing doesn’t tell you everything you
want to know, but indicates the right structure

» Solution: semantic parsing: many forms of this task depending on
semantic formalisms

» CCG parsers can produce these kinds of expressions, which can be used
for database querying/question answering

CCG Parsing

Combinatory Categorial Grammar

» Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
» Parallel derivations of syntactic parse and lambda calculus expression

» Syntactic categories (for this lecture): S, NP,
“slash” categories

(“: : ' S
» S\NP: “if | combine with an NP on my

left side, | form a sentence” — verb ————————
NP S\NP
» When you apply this, there has to be a e/28 || Ay. sings(y)
parallel instance of function Eminem sings

application on the semantics side

Combinatory Categorial Grammar

» Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
» Syntactic categories (for this lecture): S, NP, “slash” categories

» S\NP: “if | combine with an NP on my left side, | form a sentence” — verb
» (S\NP)/NP: “I need an NP on my right and then on my left” — verb

with a direct object S
borders(el(01l,e89)
S S\NP
sings(e728) Ay borders(y,e89)

S\NP NP (S\NP)/NP NP
e/28 Ay. sings(y) el01l |[|Ax.Ay borders(y,x)|| €89

Eminem sings Oklahoma borders Texas

CCG Parsing

What states border Texas
(S/(S\NP))/N N (S\NP)/NP NP
AfAg A x. f(x) A g(x) Ax.state(x) Ax.A\y.borders(y,x) texas
(S\NP)

Ay.borders(y, texas)

» “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)

Zettlemoyer and Collins (2005)

CCG Parsing

What states border Texas
(S/(S\NP))/N N (S\NP)/NP NP
Af g x.f(x) Ag(x)| Ax.state(x) Ax.Ay.borders(y,x) texas
> >
S/(S\NP) (S\NP)
Ag.\x.state(x) A g(x) Ay.borders(y, texas)
>
S

Az.state(x) A borders(x, texas)

» “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)

» Lexicon is highly ambiguous — all the challenge of CCG parsing is in

CCG Parsing

Show me flights to Prague
S/N N (N\N) /NP NP
Af. £ Ax.flight(x) Ay.Af.Ax.f(x)Ato(x,y) PRG

N\N

Af.Ax.f (x) rto(x,PRG)

N
Ax.flight (x) Anto(x, PRG)

S
Ax.flight (x) rto(x,PRG)

» “to” needs an NP (destination) and N (parent)

Slide credit: Dan Klein

Building CCG Parsers

» Training data looks like pairs of sentences and logical forms
What states border Texas Ax. state(x) A borders(x, e89)

» Problem: we don’t know the derivation

» Texas corresponds to NP | €89 in the logical form (easy to figure out)

» What corresponds to (S/(S\NP))/N | Af .Ag.Ax. f(x) A g(x)

» How do we infer that without being told it?

» Building these parsers is very hard...let’s try a different approach!

Zettlemoyer and Collins (2005)

Encoder-Decoder Models

Encoder-Decoder

» Can view many tasks as mapping from an input sequence of tokens to an
output sequence of tokens

» Semantic parsing:

What states border Texas — A x state(x) A borders(x , €89)

» Syntactic parsing
The dogran —— (S (NP (DT the) (NN dog)) (VP (VBD ran)))

(but what if we produce an invalid tree or one with different words?) &

» Machine translation, summarization, dialogue can all be viewed in this
framework as well — our examples will be MT for now

Encoder-Decoder

» Encode a sequence into a fixed-sized vector

le film était bon [STOP]

H A OO

the movie was great

» Now use that vector to produce a series of tokens as output from a
separate LSTM decoder

Sutskever et al. (2014)

Encoder-Decoder

Edward Grefenstette (Eollow) v

@egrefen

“You can't cram the meaning of a whole %&!$ing sentence into a single
s&'*lng VeCtOr!" Yes. the censored-out swearing is copied verbatim

Single vector re r
sentences cause._ .. __._..._.

s>

]

® - |
45 @ Training focusses on learning

A marginal language model of
N
4

g

It’'s not an ACL tutorial on vector
representations of meaning if the
least one Ray Mooney quote.

A Transduction Bottleneck

target language first.

18886861
@@@ @@@8@ g oy e » Is this true? Sort of...we’ll come back to
! o wwe @ Encoder gets significantly

o o diminished gradient. t h | S | 3 te r

“You can't cram the meaning of a whole %&!$ing sentence into a single
s&'*"‘g VeCtor!" Yes, the censored-out swearing is copied verbatim

12:27 AM - 11 Jul 2017

20 Retweets 127 Likes '. Q 3 06@ I 3

Model

» Generate next word conditioned on previous word as well as hidden state

» W size is |vocab| x | hidden state|, softmax over entire vocabulary

(yZ|X7 Yi1y- -5 Yi— 1) — SOftmaX(Wh)
Y‘X prz‘xvylv'“vy’i—l)

Decoder has separate
parameters from encoder, so
this can learn to be a language
model (produce a plausible next
word given current one)

the movie was great <s>

Inference

» Generate next word conditioned on previous word as well as hidden state

L

the movie was great <S$>

- film |était | bon |[STOP]

» During inference: need to compute the argmax over the word predictions
and then feed that to the next RNN state

» Need to actually evaluate computation graph up to this point to form
input for the next state

» Decoder is advanced one state at a time until [STOP] is reached

Implementing Encoder-Decoder
Models

Implementing seq2seq Models

Encoder Decoder Decoder

the movie was great <§>

» Encoder: consumes sequence of tokens, produces a vector. Analogous to
encoders for classification/tagging tasks

» Decoder: separate module, single cell. Takes two inputs: hidden state
(vector h or tuple (h, c)) and previous token. Outputs token + new state

Tralning

le était [STOP]
e
R

CHHCH | D

the movie was great le film etait bon

» Objective: maximize Z Zlog Py 1%, 975, Y1)
(x,y) =1

» One loss term for each target-sentence word, feed the correct word
regardless of model’s prediction (called “teacher forcing”)

Training: Scheduled Sampling

» Model needs to do the right thing even with its own predictions

la | film| etais bon [STOP]

CHCHCHOH
e

Im etait

» Scheduled sampling: with probability p, take the gold as input, else take
the model’s prediction

the movie was great

» Starting with p = 1 (teacher forcing) and decaying it works best

» “Right” thing: train with reinforcement learning Bengio et al. (2015)

Implementation Details

» Sentence lengths vary for both encoder and decoder:

» Typically pad everything to the right length and use a mask or indexing
to access a subset of terms

» Encoder: looks like what you did in Mini 2

» Decoder: execute one step of computation at a time, so computation
graph is formulated as taking one input + hidden state

» Test time: do this until you generate the stop token

» Training: do this until you reach the gold stopping point

Implementation Details (cont’d)

» Batching is pretty tricky: decoder is across time steps, so you probably
want your label vectors to look like [num timesteps x batch size x num
labels], iterate upwards by time steps

» Beam search: can help with lookahead. Finds the (approximate) highest

scoring segquence:

argmax,, H P(y;|x,y1,...,Yi—1)
i=1

Beam Search

» Maintain decoder state, token history in beam film: 0.4
Ia: 0.4 :o -.‘. 6
le: 0.3 _ ' 103
les: 0.1 S : . : ,‘ \ e |:| S
e Voo i I O B vl f filml || ©
T R _
_>|:| I = film: 0.8 2 S
’ = m -
w film| || £
the movie was great <S> RELE TER ‘ S
N o)
~

o
[1
(T°0)80]

le
» Keep both film states! Hidden state vectors are different

Other Architectures

» What’s the basic abstraction here?
» Encoder: sentence -> vector

» Decoder: hidden state, output prefix -> new hidden state, new output

» OR: sentence, output prefix -> new output (more general)

» Wide variety of models can apply here: CNN encoders, decoders can be
any autoregressive model including certain types of CNNs

» Transformer: another model discussed next lecture

Takeaways

» Can represent meaning with first order logic and lambda calculus

» Can bridge syntax and semantics and create semantic parsers that can
interpret language into lambda-calculus expressions

» seq2seq models provide an easier way to do this

» Next time: continue seg2seq semantic parsing, discuss attention

