CS388: Natural Language Processing

Lecture 14:
Semantics / Seq2seq I

Greg Durrett

TExAS
The University of Texas at Austin
Final project proposals due Thursday; can exceed 1 page if needed

P2 released Thursday, due three weeks after
Recall: Dependencies

- Dependency syntax: syntactic structure is defined by dependencies
 - Head (parent, governor) connected to dependent (child, modifier)
 - Each word has exactly one parent except for the ROOT symbol
 - Dependencies must form a directed acyclic graph
Recall: Shift-Reduce Parsing

ROOT

I ate some spaghetti bolognese

State: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]

Left-arc (reduce operation): Let σ denote the stack

- “Pop two elements, add an arc, put them back on the stack”
 $$\sigma | w_{-2}, w_{-1} \rightarrow \sigma | w_{-1}, w_{-2} \text{ is now a child of } w_{-1}$$

- Train a classifier to make (shift, left-arc, right-arc) decisions sequentially — that classifier can parse sentences for you
Where are we now?

- Classification, then sequences, then trees

- Now we can understand sentences in terms of tree structures as well

- Why is this useful? What does this allow us to do?

- We’re going to see how parsing can be a stepping stone towards more formal representations of language meaning. We’ll contrast with these approaches when we revisit the same problems later with neural nets.
Montague semantics:

- Model theoretic semantics

- Compositional semantics with first-order logic

CCG parsing for database queries

Seq2seq semantic parsing
Model Theoretic Semantics
Model Theoretic Semantics

- Key idea: can ground out natural language expressions in set-theoretic expressions called *models* of those sentences
- Natural language statement $S \Rightarrow$ interpretation of S that models it

 She likes going to that restaurant

- Interpretation: defines who *she* and *that restaurant* are, make it able to be concretely evaluated with respect to a *world*

- Entailment (statement A implies statement B) reduces to: in all worlds where A is true, B is true

- Our modeling language is *first-order logic*
First-order Logic

- Powerful logic formalism including things like entities, relations, and quantifications

 Lady Gaga sings

- sings is a *predicate* (with one argument), function f: entity \rightarrow true/false

- $\text{sings}(\text{Lady Gaga}) = \text{true or false}$, have to execute this against some database (*world*)

- Quantification: “for all” operator, “there exists” operator

 $\forall x \text{sings}(x) \lor \text{dances}(x) \rightarrow \text{performs}(x)$

 “Everyone who sings or dances performs”
Montague Semantics

- Sentence expresses something about the world which is either true or false
- Denotation: evaluation of some expression against this database

\[
[[\text{Lady Gaga}]] = e470 \quad \quad [[\text{sings(e470)}]] = \text{True}
\]

denotation of this string is an entity \quad \quad \text{denotation of this expression is T/F}

Database containing entities, predicates, etc.

Table:

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Alias</th>
<th>Birthdate</th>
<th>Sings?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e470</td>
<td>Stefani Germanotta</td>
<td>Lady Gaga</td>
<td>3/28/1986</td>
<td>T</td>
</tr>
<tr>
<td>e728</td>
<td>Marshall Mathers</td>
<td>Eminem</td>
<td>10/17/1972</td>
<td>T</td>
</tr>
</tbody>
</table>
Montague Semantics

\[\text{sings}(\text{e470}) \]

- function application: apply this to e470

\[\lambda y. \text{sings}(y) \]

- takes one argument \((y, \text{the entity})\) and returns a logical form \(\text{sings}(y)\)

- We can use the syntactic parse as a bridge to the lambda-calculus representation, build up a logical form (our model) \textit{compositionally}
Parses to Logical Forms

\(\text{sings(e470) \land \text{dances(e470)}}\)

\[S \\
\text{e470} \quad \text{NP} \\
\text{NNP} \quad \text{NNP} \quad \text{VP} \\
\text{NNP} \quad \text{NNP} \quad \text{VP} \\
\text{VP} \quad \text{CC} \quad \text{VP} \\
\text{VP} \quad \text{VP} \\
\text{VP} \\
\lambda y. \text{sings(y) \land dances(y)}
\]

General rules:
- VP: \(\lambda y. a(y) \land b(y) \rightarrow \text{VP: } \lambda y. a(y) \text{ CC VP: } \lambda y. b(y)\)
- S: \(f(x) \rightarrow \text{NP: } x \text{ VP: } f\)
Lady Gaga was born on March 28, 1986.

\[\lambda x. \lambda y. \text{born}(y, x) \quad 3/28/1986 \]

- Function takes two arguments: first \(x \) (date), then \(y \) (entity).
- How to handle tense: should we indicate that this happened in the past?
Tricky things

- **Adverbs/temporality:** *Lady Gaga sang well yesterday*

sings(Lady Gaga, time=yesterday, manner=well)

- “Neo-Davidsonian” view of events: things with many properties:

 \[\exists e. \text{type}(e, \text{sing}) \land \text{agent}(e, e470) \land \text{manner}(e, \text{well}) \land \text{time}(e,...) \]

- **Quantification:** *Everyone is friends with someone*

 \[\exists y \forall x \text{friend}(x,y) \quad \forall x \exists y \text{friend}(x,y) \]

 (one friend) (different friends)

 - Same syntactic parse for both! So syntax doesn't resolve all ambiguities

- **Indefinite:** *Amy ate a waffle*

 \[\exists w. \text{waffle}(w) \land \text{ate}(Amy,w) \]

- **Generic:** *Cats eat mice* (all cats eat mice? most cats? some cats?)
For question answering, syntactic parsing doesn’t tell you everything you want to know, but indicates the right structure.

Solution: *semantic parsing*: many forms of this task depending on semantic formalisms.

CCG parsers can produce these kinds of expressions, which can be used for database querying/question answering.
CCG Parsing
Combinatory Categorial Grammar

- Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- Parallel derivations of syntactic parse and lambda calculus expression
- Syntactic categories (for this lecture): S, NP, “slash” categories
 - S\NP: “if I combine with an NP on my left side, I form a sentence” — verb
 - When you apply this, there has to be a parallel instance of function application on the semantics side

\[
\begin{array}{c}
\text{NP} \\
\text{e728} \\
\text{S\NP} \\
\lambda y. \text{sings}(y) \\
\text{S} \\
\text{sings(e728)} \\
\end{array}
\]
Combinatory Categorial Grammar

- Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
- Syntactic categories (for this lecture): S, NP, “slash” categories
 - S\NP: “if I combine with an NP on my left side, I form a sentence” — verb
 - (S\NP)/NP: “I need an NP on my right and then on my left” — verb with a direct object

```
NP e728  S\NP \lambda y. sings(y)
        Eminem  sings
```

```
NP e101  (S\NP)/NP \lambda x. \lambda y borders(y, x)
        Oklahoma  borders
```

```
NP e89  S\NP \lambda y borders(y, e89)
        Texas
```

```
S  borders(e101, e89)
  sings(e728)
```

λy. sings(y) \lambda x. \lambda y borders(y, x)
“What” is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas)
"What" is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas).

Lexicon is highly ambiguous — all the challenge of CCG parsing is in picking the right lexicon entries.
CCG Parsing

<table>
<thead>
<tr>
<th>S/N</th>
<th>flights</th>
<th>to</th>
<th>Prague</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/N</td>
<td>(\lambda f.f)</td>
<td>(\lambda y. \lambda f. \lambda x.f(x) \land to(x,y))</td>
<td>NP PRG</td>
</tr>
<tr>
<td>(\lambda x.\text{flight}(x))</td>
<td>(\lambda f.\lambda x.f(x) \land to(x,\text{PRG}))</td>
<td>(\lambda x.\text{flight}(x) \land to(x,\text{PRG}))</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>(\lambda x.\text{flight}(x) \land to(x,\text{PRG}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- “to” needs an NP (destination) and N (parent)

Slide credit: Dan Klein
Building CCG Parsers

- Training data looks like pairs of sentences and logical forms

What states border Texas \[\lambda x. \text{state}(x) \land \text{borders}(x, e89) \]

- Problem: we don’t know the derivation
 - Texas corresponds to NP | e89 in the logical form (easy to figure out)
 - What corresponds to (S/(S\NP))/N | \[\lambda f. \lambda g. \lambda x. f(x) \land g(x) \]
 - How do we infer that without being told it?

- Building these parsers is very hard...let’s try a different approach!

Zettlemoyer and Collins (2005)
Encoder-Decoder Models
Encoder-Decoder

- Can view many tasks as mapping from an input sequence of tokens to an output sequence of tokens

- Semantic parsing:
 \[What \text{ states border } Texas \rightarrow \lambda x \text{ state}(x) \land \text{borders}(x, e89) \]

- Syntactic parsing
 \[The \text{ dog ran} \rightarrow (S (NP (DT the) (NN dog)) (VP (VBD ran))) \]
 (but what if we produce an invalid tree or one with different words?) 🤔

- Machine translation, summarization, dialogue can all be viewed in this framework as well — our examples will be MT for now
Encoder-Decoder

- Encode a sequence into a fixed-sized vector

- Now use that vector to produce a series of tokens as output from a separate LSTM decoder

Sutskever et al. (2014)
It's not an ACL tutorial on vector representations of meaning if there isn't at least one Ray Mooney quote.

- Is this true? Sort of...we’ll come back to this later
Model

- Generate next word conditioned on previous word as well as hidden state
- W size is |vocab| x |hidden state|, softmax over entire vocabulary

![Diagram of the model](image)

\[
P(y_i|x, y_1, \ldots, y_{i-1}) = \text{softmax}(W\bar{h})
\]

\[
P(y|x) = \prod_{i=1}^{n} P(y_i|x, y_1, \ldots, y_{i-1})
\]

Decoder has separate parameters from encoder, so this can learn to be a language model (produce a plausible next word given current one)
Inference

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state

- Need to actually evaluate computation graph up to this point to form input for the next state

- Decoder is advanced one state at a time until [STOP] is reached
Implementing Encoder-Decoder Models
Implementing seq2seq Models

- Encoder: consumes sequence of tokens, produces a vector. Analogous to encoders for classification/tagging tasks
- Decoder: separate module, single cell. Takes two inputs: hidden state (vector h or tuple (h, c)) and previous token. Outputs token + new state
Training

Objective: maximize \(\sum\sum_{(x,y)}^{n} \log P(y^*_i | x, y^*_1, \ldots, y^*_i-1) \)

One loss term for each target-sentence word, feed the correct word regardless of model’s prediction (called “teacher forcing”)

Model needs to do the right thing even with its own predictions.

Scheduled sampling: with probability p, take the gold as input, else take the model’s prediction.

Starting with $p = 1$ (teacher forcing) and decaying it works best.

“Right” thing: train with reinforcement learning

Bengio et al. (2015)
Sentence lengths vary for both encoder and decoder:

- Typically pad everything to the right length and use a mask or indexing to access a subset of terms.

Encoder: looks like what you did in Mini 2.

Decoder: execute one step of computation at a time, so computation graph is formulated as taking one input + hidden state.
 - Test time: do this until you generate the stop token.
 - Training: do this until you reach the gold stopping point.
Batching is pretty tricky: decoder is across time steps, so you probably want your label vectors to look like \([\text{num timesteps} \times \text{batch size} \times \text{num labels}]\), iterate upwards by time steps.

Beam search: can help with lookahead. Finds the (approximate) highest scoring sequence:

\[
\arg\max_y \prod_{i=1}^{n} P(y_i|x, y_1, \ldots, y_{i-1})
\]
Beam Search

- Maintain decoder state, token history in beam

- Keep both *film* states! Hidden state vectors are different

```
<s>

the movie was great

[Diagram showing beam search with probabilities and states.]

la: 0.4  
le: 0.3  
les: 0.1

log(0.4)
log(0.3)
log(0.1)

film: 0.4

log(0.3) + log(0.8)
log(0.4) + log(0.4)

film
la
le
```
What’s the basic abstraction here?

- Encoder: sentence -> vector
- Decoder: hidden state, output prefix -> new hidden state, new output
 - OR: sentence, output prefix -> new output (more general)

Wide variety of models can apply here: CNN encoders, decoders can be any autoregressive model including certain types of CNNs

Transformer: another model discussed next lecture
Takeaways

- Can represent meaning with first order logic and lambda calculus

- Can bridge syntax and semantics and create semantic parsers that can interpret language into lambda-calculus expressions

- seq2seq models provide an easier way to do this

- Next time: continue seq2seq semantic parsing, discuss attention