
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	14:	
Seman<cs	/	
Seq2seq	I

Administrivia

‣ Final	project	proposals	due	Thursday;	can	exceed	1	page	if	needed

‣ P2	released	Thursday,	due	three	weeks	aPer

Recall:	Dependencies

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntac<c	structure	is	defined	by	dependencies	
‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol	
‣ Dependencies	must	form	a	directed	acyclic	graph

ROOT

Recall:	ShiP-Reduce	Parsing

I	ate	some	spaghe\	bolognese

ROOT

‣ State:	Stack:		[ROOT	I	ate]				Buffer:		[some	spaghe\	bolognese]

‣ LeP-arc	(reduce	opera<on):	Let					denote	the	stack�
‣ “Pop	two	elements,	add	an	arc,	put	them	back	on	the	stack”

�|w�2, w�1 ! �|w�1 w�1w�2 is	now	a	child	of,

‣ Train	a	classifier	to	make	(shiP,	leP-arc,	right-arc)	decisions	
sequen<ally	—	that	classifier	can	parse	sentences	for	you

Where	are	we	now?

‣ Classifica<on,	then	sequences,	then	trees

‣ Why	is	this	useful?	What	does	this	allow	us	to	do?

‣ Now	we	can	understand	sentences	in	terms	of	tree	structures	as	well

‣We’re	going	to	see	how	parsing	can	be	a	stepping	stone	towards	more	
formal	representa<ons	of	language	meaning.	We’ll	contrast	with	these	
approaches	when	we	revisit	the	same	problems	later	with	neural	nets.

Today

‣Model	theore<c	seman<cs

‣ CCG	parsing	for	database	queries

‣ Composi<onal	seman<cs	with	first-order	logic

‣Montague	seman<cs:

‣ Seq2seq	seman<c	parsing

Model	Theore<c	Seman<cs

Model	Theore<c	Seman<cs
‣ Key	idea:	can	ground	out	natural	language	expressions	in	set-
theore<c	expressions	called	models	of	those	sentences

‣ Natural	language	statement	S	=>	interpreta<on	of	S	that	models	it

‣ Entailment	(statement	A	implies	statement	B)	reduces	to:	in	all	worlds	
where	A	is	true,	B	is	true

She	likes	going	to	that	restaurant

‣ Interpreta<on:	defines	who	she	and	that	restaurant	are,	make	it	able	to	
be	concretely	evaluated	with	respect	to	a	world

‣ Our	modeling	language	is	first-order	logic

First-order	Logic

‣ sings	is	a	predicate	(with	one	argument),	func<on	f:	en<ty	→	true/false

‣ Powerful	logic	formalism	including	things	like	en<<es,	rela<ons,	and	
quan<fica<ons

Lady	Gaga	sings

‣ sings(Lady	Gaga)	=	true	or	false,	have	to	execute	this	against	some	
database	(world)

‣ Quan<fica<on:	“forall”	operator,	“there	exists”	operator

∀x	sings(x)	∨	dances(x)	→	performs(x)

“Everyone	who	sings	or	dances	performs”

Montague	Seman<cs

Id Name Alias Birthdate Sings?
e470 Stefani	Germano8a Lady	Gaga 3/28/1986 T
e728 Marshall	Mathers Eminem 10/17/1972 T

Database	containing	en<<es,	predicates,	etc.

‣ Sentence	expresses	something	about	the	world	which	is	either	true	or	
false

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

‣ Denota<on:	evalua<on	of	some	expression	against	this	database

[[Lady	Gaga]] = e470

denota<on	of	this	string	is	an	en<ty

[[sings(e470)]] = True

denota<on	of	this	expression	is	T/F

Montague	Seman<cs

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

e470

λy. sings(y)
takes	one	argument	(y,	the	en<ty)	and	
returns	a	logical	form	sings(y)

λy. sings(y)

sings(e470)

‣ We	can	use	the	syntac<c	parse	as	a	bridge	to	the	lambda-calculus	
representa<on,	build	up	a	logical	form	(our	model)	composi?onally

func<on	applica<on:	apply	this	to	e470
ID

Parses	to	Logical	Forms

NP

VPNNP NNP

S

VBP
Lady			Gaga

sings

e470

λy. sings(y)

sings(e470) ∧ dances(e470)

VP

CC VP

VBP
dances
λy. dances(y)

and

VP:	λy.	a(y)	∧	b(y)	->	VP:	λy.	a(y)	CC	VP:	λy.	b(y)

λy. sings(y) ∧ dances(y)

‣ General	rules:
S:	f(x)	->	NP:	x	VP:	f

Parses	to	Logical	Forms

NP

NNP NNP

S

VBD
Lady			Gaga was

e470

λx.λy. born(y,x)

born(e470,3/28/1986)

VP

NP

March	28,	1986born

λy. born(y, 3/28/1986)

VBN

VP

λy. born(y, 3/28/1986)

‣ How	to	handle	tense:	should	we	indicate	that	this	happened	in	the	past?
‣ Func<on	takes	two	arguments:	first	x	(date),	then	y	(en<ty)

3/28/1986

Tricky	things
‣ Adverbs/temporality:	Lady	Gaga	sang	well	yesterday

∃e. type(e,sing) ∧ agent(e,e470) ∧ manner(e,well) ∧ time(e,…)
‣ “Neo-Davidsonian”	view	of	events:	things	with	many	proper<es:

‣ Quan<fica<on:	Everyone	is	friends	with	someone

‣ Generic:	Cats	eat	mice	(all	cats	eat	mice?	most	cats?	some	cats?)

∀x ∃y friend(x,y)∃y ∀x friend(x,y)
(different	friends)(one	friend)

‣ Same	syntac<c	parse	for	both!	So	syntax	doesn't	resolve	all	ambigui<es

sings(Lady Gaga, time=yesterday, manner=well)

‣ Indefinite:	Amy	ate	a	waffle ∃w. waffle(w) ∧ ate(Amy,w)

Seman<c	Parsing

‣ For	ques<on	answering,	syntac<c	parsing	doesn’t	tell	you	everything	you	
want	to	know,	but	indicates	the	right	structure

‣ Solu<on:	seman?c	parsing:	many	forms	of	this	task	depending	on	
seman<c	formalisms

‣ CCG	parsers	can	produce	these	kinds	of	expressions,	which	can	be	used	
for	database	querying/ques<on	answering

CCG	Parsing

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	(1980s):	formalism	bridging	syntax	and	seman<cs

‣ Syntac<c	categories	(for	this	lecture):	S,	NP,	
“slash”	categories

‣ S\NP:	“if	I	combine	with	an	NP	on	my	
leP	side,	I	form	a	sentence”	—	verb

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

‣ Parallel	deriva<ons	of	syntac<c	parse	and	lambda	calculus	expression

‣When	you	apply	this,	there	has	to	be	a	
parallel	instance	of	func<on	
applica<on	on	the	seman<cs	side

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	1980s:	formalism	bridging	syntax	and	seman<cs
‣ Syntac<c	categories	(for	this	lecture):	S,	NP,	“slash”	categories
‣ S\NP:	“if	I	combine	with	an	NP	on	my	leP	side,	I	form	a	sentence”	—	verb
‣ (S\NP)/NP:	“I	need	an	NP	on	my	right	and	then	on	my	leP”	—	verb	
with	a	direct	object

NP S\NP

Eminem sings
e728 λy. sings(y)

S
sings(e728)

NP (S\NP)/NP

Oklahoma borders
e101

Texas
e89
NP

λx.λy borders(y,x)

S\NP
λy borders(y,e89)

S
borders(e101,e89)

CCG	Parsing

Ze8lemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

CCG	Parsing

Ze8lemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

‣ Lexicon	is	highly	ambiguous	—	all	the	challenge	of	CCG	parsing	is	in	
picking	the	right	lexicon	entries

CCG	Parsing

Slide	credit:	Dan	Klein

‣ “to”	needs	an	NP	(des<na<on)	and	N	(parent)

Building	CCG	Parsers

Ze8lemoyer	and	Collins	(2005)

‣ Training	data	looks	like	pairs	of	sentences	and	logical	forms

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

‣ Texas	corresponds	to	NP	|	e89	in	the	logical	form	(easy	to	figure	out)

(S/(S\NP))/N	|	λf.λg.λx. f(x) ∧ g(x)‣ What	corresponds	to

‣ How	do	we	infer	that	without	being	told	it?

‣ Problem:	we	don’t	know	the	deriva<on

‣ Building	these	parsers	is	very	hard…let’s	try	a	different	approach!

Encoder-Decoder	Models

Encoder-Decoder

‣ Seman<c	parsing:

What	states	border	Texas λ x state(x) ∧ borders(x , e89)

‣ Syntac<c	parsing
The	dog	ran (S (NP (DT the) (NN dog)) (VP (VBD ran)))

(but	what	if	we	produce	an	invalid	tree	or	one	with	different	words?)	 🤔

‣Machine	transla<on,	summariza<on,	dialogue	can	all	be	viewed	in	this	
framework	as	well	—	our	examples	will	be	MT	for	now

‣ Can	view	many	tasks	as	mapping	from	an	input	sequence	of	tokens	to	an	
output	sequence	of	tokens

Encoder-Decoder
‣ Encode	a	sequence	into	a	fixed-sized	vector

the		movie		was			great

‣ Now	use	that	vector	to	produce	a	series	of	tokens	as	output	from	a	
separate	LSTM	decoder

le						film			était			bon	[STOP]

Sutskever	et	al.	(2014)

Encoder-Decoder

‣ Is	this	true?	Sort	of…we’ll	come	back	to	
this	later

Model
‣ Generate	next	word	condi<oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great <s>

h̄

‣ W	size	is	|vocab|	x	|hidden	state|,	soPmax	over	en<re	vocabulary

Decoder	has	separate	
parameters	from	encoder,	so	
this	can	learn	to	be	a	language	
model	(produce	a	plausible	next	
word	given	current	one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)y1
<latexit sha1_base64="7G4kLJYkX3D7/ov8pWJUOLn1JaM=">AAAGE3icjVTLbtQwFE3LDJTwamHJxqIaNVFDlbSVQEhFFWwQEtLw6ENq2shxPBmrecl2mhll/A9s+BU2LECILRt2/A2OkxQ6nbZYmszNOee+7Bv7WUQYt+3fc/PXOt3rNxZu6rdu37l7b3Hp/i5Lc4rwDkqjlO77kOGIJHiHEx7h/YxiGPsR3vOPX1b83gmmjKTJBz7O8GEMw4QMCIJcQt5Sx+y5MMqG0HMMZoIt4OJRZrjZkHjYYJZjuTHkQ39QjoRp6q2WG8zjSs3y2CuZV/LHjhCgodWb0aDm2ZAet/h00FOet05WFd8EkvMxn5lvVeVTrHoxGnA6nQIt+bg0Kbdad5U0wgNu1LlC4JIEuByPOI3LJKQwZjJz4UkCBSkHyKUkHPIqZJSGoG+Mt5xJYSETrAJ3QCEqHVEei6Z0suWIIxmvldqTwiNSrPf6RltgIapW+0bhOab6W5+cmhuVaUlI9hnJ9KxylCEUXCOSLYna+DpIxUkgqfZhSqGcJ21zJ4QRjgPwHibKua6+ZVGaJ1wYs8QWKEzxP0JTnM2YyP0rYMIBT0GYyud0SVcKXqfDBLQp3sAAhpAhSOv6I/kdBHKyL+/kohCXdnWBkylHY7U5GWXUFWzOrmBW/Gqmmm36ewYTt8yegSlpZknFc9sVExmlGq4CXKXTe8xz9N6onmk1bn75ThwFoB5iSGlagNFKzZe25bjiqAxWhD72HG9x2V6z1QLnDacxlrVm9b3FX26QojzGCUcRZOzAsTN+WELKCYqw0N2c4QyiYxjiA2kmMMbssFR3mgA9iQRgkFL5k+ev0H89SvkdsnHsS2XVB5vmKnAWd5DzwdPDkiRZznGC6kSDPKomrLogQUAoRjwaSwMiSmStAA2hPAUur1FdboIz3fJ5Y3d9zdlYW3+7ubz9otmOBe2h9kgzNEd7om1rr7S+tqOhzsfO587Xzrfup+6X7vfuj1o6P9f4PNDOrO7PP83BCWI=</latexit>

Inference
‣ Generate	next	word	condi<oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predic<ons	
and	then	feed	that	to	the	next	RNN	state	

le					

<s>

‣ Need	to	actually	evaluate	computa<on	graph	up	to	this	point	to	form	
input	for	the	next	state

‣ Decoder	is	advanced	one	state	at	a	<me	un<l	[STOP]	is	reached

film était bon [STOP]

Implemen<ng	Encoder-Decoder	
Models

Implemen<ng	seq2seq	Models

the		movie		was			great

‣ Encoder:	consumes	sequence	of	tokens,	produces	a	vector.	Analogous	to	
encoders	for	classifica<on/tagging	tasks

le					

<s>

‣ Decoder:	separate	module,	single	cell.	Takes	two	inputs:	hidden	state	
(vector	h	or	tuple	(h,	c))	and	previous	token.	Outputs	token	+	new	state

Encoder

…

film					

le

Decoder Decoder

Training

‣ Objec<ve:	maximize

the		movie		was			great <s> le						film			était			bon

le

‣ One	loss	term	for	each	target-sentence	word,	feed	the	correct	word	
regardless	of	model’s	predic<on	(called	“teacher	forcing”)

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)

Training:	Scheduled	Sampling

‣ Star<ng	with	p	=	1	(teacher	forcing)	and	decaying	it	works	best

‣ Scheduled	sampling:	with	probability	p,	take	the	gold	as	input,	else	take	
the	model’s	predic<on

the		movie		was			great

la						film			étais			bon	[STOP]

le film était

‣ Model	needs	to	do	the	right	thing	even	with	its	own	predic<ons

Bengio	et	al.	(2015)

sample

‣ “Right”	thing:	train	with	reinforcement	learning

Implementa<on	Details

‣ Sentence	lengths	vary	for	both	encoder	and	decoder:

‣ Typically	pad	everything	to	the	right	length	and	use	a	mask	or	indexing	
to	access	a	subset	of	terms

‣ Encoder:	looks	like	what	you	did	in	Mini	2

‣ Decoder:	execute	one	step	of	computa<on	at	a	<me,	so	computa<on	
graph	is	formulated	as	taking	one	input	+	hidden	state

‣ Test	<me:	do	this	un<l	you	generate	the	stop	token

‣ Training:	do	this	un<l	you	reach	the	gold	stopping	point

Implementa<on	Details	(cont’d)

‣ Batching	is	pre8y	tricky:	decoder	is	across	<me	steps,	so	you	probably	
want	your	label	vectors	to	look	like	[num	<mesteps	x	batch	size	x	num	
labels],	iterate	upwards	by	<me	steps

‣ Beam	search:	can	help	with	lookahead.	Finds	the	(approximate)	highest	
scoring	sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)

Beam	Search
‣ Maintain	decoder	state,	token	history	in	beam

la:	0.4					

<s>

la

le

les

le:	0.3
les:	0.1					

log(0.4)
log(0.3)

log(0.1)

film:	0.4

la

…

film:	0.8					

le

… le	
film

la	
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣ Keep	both	film	states!	Hidden	state	vectors	are	different

the		movie		was			great

Other	Architectures
‣ What’s	the	basic	abstrac<on	here?

‣ Encoder:	sentence	->	vector

‣ Decoder:	hidden	state,	output	prefix	->	new	hidden	state,	new	output

‣Wide	variety	of	models	can	apply	here:	CNN	encoders,	decoders	can	be	
any	autoregressive	model	including	certain	types	of	CNNs

‣ Transformer:	another	model	discussed	next	lecture

‣ OR:	sentence,	output	prefix	->	new	output	(more	general)

Takeaways

‣ Can	represent	meaning	with	first	order	logic	and	lambda	calculus

‣ seq2seq	models	provide	an	easier	way	to	do	this

‣ Can	bridge	syntax	and	seman<cs	and	create	seman<c	parsers	that	can	
interpret	language	into	lambda-calculus	expressions

‣ Next	<me:	con<nue	seq2seq	seman<c	parsing,	discuss	aUen?on

