CS388: Natural Language Processing

Lecture 16:
Machine
Translation 1

Star Wars The Third Gathers: The Backstroke of the West (subtitles machine translated from Chinese)

Some slides adapted from Dan Klein, UC Berkeley

Administrivia

Project 2 due in a week

Recall: Pointer Networks

$$P(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) = \operatorname{softmax}(W[c_i;\bar{h}_i])$$

- the a of ... notile ... was ... great
- Standard decoder (P_{vocab}): softmax over vocabulary, all words get >0 prob
- Pointer network: predict from source words instead of target vocab

Recall: Self-Attention/Transformers

► Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = \operatorname{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{i=1}^n lpha_{i,j} x_j$ vector = sum of scalar * vector

Multiple "heads" analogous to different convolutional filters. Use parameters W_k and V_k to get different attention values + transform vectors

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

Vaswani et al. (2017)

This Lecture

- MT basics, evaluation
- Word alignment
- Phrase-based decoders
- Syntax-based decoders

MT Basics

MT Ideally

- ▶ I have a friend => ∃x friend(x,self) => J'ai un ami
 J'ai une amie (friend is female)
 - May need information you didn't think about in your representation
 - Hard for semantic representations to cover everything
- Everyone has a friend => $\exists x \forall y \text{ friend}(x,y) => \text{Tous a un amis}$
 - ▶ Can often get away without doing all disambiguation same ambiguities may exist in both languages

MT in Practice

▶ Bitext: this is what we learn translation systems from. What can you learn?

Je fais un bureau l'm making a desk

Je fais une soupe l'm making soup

Je fais un bureau I make a desk

Qu'est-ce que tu fais? What are you making?

What makes this hard? Not word-to-word translation
Multiple translations of a single source (ambiguous)

Levels of Transfer: Vauquois Triangle

Today: mostly phrase-based, some syntax

Slide credit: Dan Klein

Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
 - ▶ How to identify phrases? Word alignment over source-target bitext
 - ▶ How to stitch together? Language model over target language
 - Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)

Phrase-Based MT

cat ||| chat ||| 0.9 the cat ||| le chat ||| 0.8 dog ||| chien ||| 0.8 house ||| maison ||| 0.6 my house ||| ma maison ||| 0.9 language ||| langue ||| 0.9

Phrase table P(f|e)

Unlabeled English data

$$P(e|f) \propto P(f|e)P(e)$$

Noisy channel model: combine scores from translation model + language model to translate foreign to English

"Translate faithfully but make fluent English"

Evaluating MT

- ▶ Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- ▶ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram *precision* vs. a reference, multiplied by brevity penalty (penalizes short translations)

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
 Typically $n = 4$, $w_i = 1/4$

$$\mathrm{BP} = \left\{ \begin{array}{ll} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \leq r \end{array} \right. \quad \text{r = length of reference} \\ \text{c = length of prediction} \end{array}$$

Word Alignment

Word Alignment

Input: a bitext, pairs of translated sentences

nous acceptons votre opinion . | | we accept your view

nous allons changer d'avis | | | we are going to change our minds

- Output: alignments between words in each sentence
 - We will see how to turn these into phrases

"accept and acceptons are aligned" \$\frac{1}{2} \frac{1}{2} \frac{

1-to-Many Alignments

Word Alignment

▶ Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model

Latent variable model:
$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}|\mathbf{a}, \mathbf{e}) P(\mathbf{a})$$

 Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

IBM Model 1

Each French word is aligned to at most one English word

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i)$$

- Set P(a) uniformly (no prior over good alignments)
- $P(f_i|e_{a_i})$: word translation probability table. Learn with EM Brown et al. (1993)

HMM for Alignment

Sequential dependence between a's to capture monotonicity

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i|a_{i-1})$$

e Thank you , I shall do so gladly

▶ Alignment dist parameterized by jump size: $P(a_j - a_{j-1})$ ——

 $ightharpoonup P(f_i|e_{a_i})$: same as before

Vogel et al. (1996)

HMM Model

- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (garbage collection)

Phrase Extraction

Find contiguous sets of aligned words in the two languages that don't have alignments to other words

```
d'assister à la reunion et ||| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we
```

Lots of phrases possible, count across all sentences and score by frequency

Decoding

Recall: n-gram Language Models

$$P(\mathbf{w}) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)\dots$$

• *n*-gram models: distribution of next word is a multinomial conditioned on previous *n*-1 words $P(w_i|w_1,\ldots,w_{i-1})=P(w_i|w_{i-n+1},\ldots,w_{i-1})$

I visited San ____ put a distribution over the next word

$$P(w|\text{visited San}) = \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})}$$

Maximum likelihood estimate of this 3-gram probability from a corpus

▶ Typically use ~5-gram language models for translation

Phrase-Based Decoding

- Inputs:
 - n-gram language model: $P(e_i|e_1,\ldots,e_{i-1}) \approx P(e_i|e_{i-n-1},\ldots,e_{i-1})$
 - ▶ Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)
- ▶ What we want to find: **e** produced by a series of phrase-by-phrase translations from an input **f**, possibly with reordering:

Phrase lattices are big!

这	7人	中包括	来自	法国	和	俄罗斯	的	宇航	员	-
the	7 people	including	by some		and	the russian	the	the astronauts		
it	7 people inc	luded	by france		and the	the russian	Ni Control	international astronautical	al of rapporteur .	
this	7 out	including the	from	the french	and the	russian	the fift	h		
these	7 among	including from		the french a	and	of the russian	of	space	members	
that	7 persons	including from	the	of france	and to	russian	of the	aerospace	members .	
	7 include		from the	of france and		russian		astronauts		. the
	7 numbers include		from france		and russian		of astro	ronauts who		. 27
	7 populations include th		those from fran-	ose from france		and russian		astronauts.		
	7 deportees included		come from	france	and ru	ssia	in	astronautical	personnel	;
	7 philtrum including those		e from	france and		russia	a space		member	
		including representatives fr		france and the rus		russia	astronaut		Š: 3	
		include	came from	france and russia		100	by cosmonauts			
		include representatives from		french	and russia		la svi	cosmonauts		
		include came from		ce and russia 's		ia 's	cosmonauts.			
		includes coming from		french and russia 's			8	cosmonaut		
				french and	russian		's	astronavigation	member .	
				french	and russia		astro	nauts		
					and russia 's			2.	special rapporteur	
					, and	russia			rapporteur	
					, and russia				rapporteur.	
		ĵ,			, and russia		0		E VENDENI	
					or	russia 's				

Slide credit: Dan Klein

Phrase-Based Decoding

Input

lo haré rápidamente.

Translations

I'll do it quickly .

quickly I'll do it . and considers reorderings.

The decoder...

tries different segmentations,

translates phrase by phrase,

$$\arg \max_{\mathbf{e}} \left[P(\mathbf{f}|\mathbf{e}) \cdot P(\mathbf{e}) \right]$$

Decoding objective (for 3-gram LM)

$$\arg \max_{\mathbf{e}} \left[\prod_{\langle \bar{e}, \bar{f} \rangle} P(\bar{f}|\bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i|e_{i-1}, e_{i-2}) \right]$$

Slide credit: Dan Klein

- ▶ If we translate with beam search, what state do we need to keep in the beam?
 - What have we translated so far? $\arg\max_{\mathbf{e}}\left|\prod_{\langle \bar{e},\bar{f}\rangle}P(\bar{f}|\bar{e})\cdot\prod_{i=1}^{|\mathbf{e}|}P(e_i|e_{i-1},e_{i-2})\right|$
 - ▶ What words have we produced so far? (need to remember the last 2 words for a 3-gram LM)

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not_ did not	<u>give</u>	<u>a slap</u> a slap		to the by		witch green green witch	
	did not give		slap		to the			
			slap		+.}	the v	witch	

- Non-monotonic translation: can visit source sentence "out of order"
- State needs to describe which words have been translated and which haven't
- Big enough phrases already capture lots of reorderings, so this isn't as important as you think

Moses

- ▶ Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
 - Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus training regimes and more
 - ▶ Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2015
- Next time: results on these and comparisons to neural methods

Syntax

Levels of Transfer: Vauquois Triangle

Is syntax a "better" abstraction than phrases?

Slide credit: Dan Klein

Syntactic MT

Rather than use phrases, use a synchronous context-free grammar

```
NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]
DT \rightarrow [the, la]
DT \rightarrow [the, le]
NP
NP
NP
NP
NN \rightarrow [car, voiture]
JJ \rightarrow [yellow, jaune]
DT_1 JJ_2 NN_3 DT_1 NN_3 JJ_2
the yellow car la voiture jaune
```

- Translation = parse the input with "half" of the grammar, read off the other half
- Assumes parallel syntax up to reordering

Syntactic MT

Input S VP ADV lo haré de muy buen grado .

Slide credit: Dan Klein

Output

- Use lexicalized rules, look like "syntactic phrases"
- Leads to HUGE grammars, parsing is slow

Grammar

```
S \rightarrow \langle VP .; I VP . \rangle OR S \rightarrow \langle VP .; you VP . \rangle

VP \rightarrow \langle Io haré ADV ; will do it ADV \rangle

S \rightarrow \langle Io haré ADV .; I will do it ADV . \rangle

ADV \rightarrow \langle de muy buen grado ; gladly \rangle
```

Takeaways

- Phrase-based systems consist of 3 pieces: aligner, language model, decoder
 - HMMs work well for alignment
 - N-gram language models are scalable and historically worked well
 - Decoder requires searching through a complex state space
- Lots of system variants incorporating syntax
- Next time: neural MT