CS388: Natural Language Processing

Lecture 16: Machine Translation 1

Greg Durrett

Star Wars The Third Gathers: The Backstroke of the West (subtitles machine translated from Chinese)

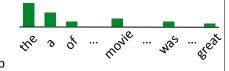
Some slides adapted from Dan Klein, UC Berkeley

Administrivia

Project 2 due in a week

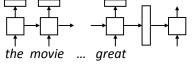
Recall: Pointer Networks

 $P(y_i|\mathbf{x}, y_1, \dots, y_{i-1}) = \operatorname{softmax}(W[c_i; \bar{h}_i])$



- ► Standard decoder (P_{vocab}): softmax over vocabulary, all words get >0 prob
- ▶ Pointer network: predict from *source words* instead of *target vocab*

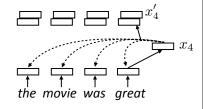
$$P_{ ext{pointer}}(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) \propto \left\{ egin{array}{l} \exp(h_j^ op Var{h}_i) & ext{if } y_i = w_j \\ ext{0 otherwise} \end{array}
ight.$$



Recall: Self-Attention/Transformers

► Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = \operatorname{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{j=1}^n lpha_{i,j} x_j$ vector = sum of scalar * vector



▶ Multiple "heads" analogous to different convolutional filters. Use parameters W_k and V_k to get different attention values + transform vectors

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^{\top} W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

Vaswani et al. (2017)

This Lecture

- ▶ MT basics, evaluation
- Word alignment
- Phrase-based decoders
- ▶ Syntax-based decoders

MT Basics

MT Ideally

- ► I have a friend => $\exists x \text{ friend}(x, \text{self}) \Rightarrow J'ai \text{ un ami}$ J'ai une amie (friend is female)
 - ▶ May need information you didn't think about in your representation
 - ▶ Hard for semantic representations to cover everything
- Fiveryone has a friend => $\frac{\exists x \forall y \text{ friend}(x,y)}{\forall x \exists y \text{ friend}(x,y)}$ => Tous a un ami
 - ▶ Can often get away without doing all disambiguation same ambiguities may exist in both languages

MT in Practice

▶ Bitext: this is what we learn translation systems from. What can you learn?

Je fais un bureau I'm making a desk

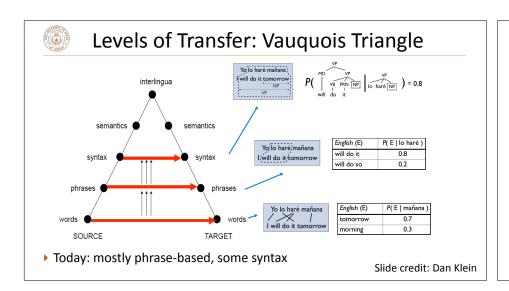
Je fais une soupe I'm making soup

Je fais un bureau I make a desk

Qu'est-ce que tu fais? What are you making?

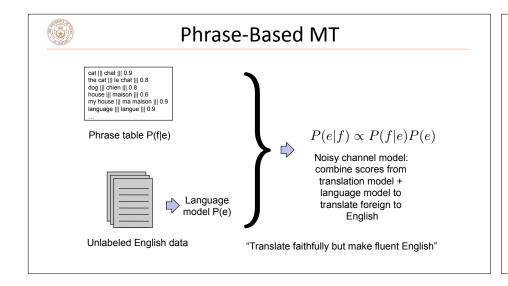
▶ What makes this hard? Not word-to-word translation

Multiple translations of a single source (ambiguous)



Phrase-Based MT

- ▶ Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- ▶ How to identify phrases? Word alignment over source-target bitext
- ▶ How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)



Evaluating MT

- ▶ Fluency: does it sound good in the target language?
- ▶ Fidelity/adequacy: does it capture the meaning of the original?
- ▶ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram *precision* vs. a reference, multiplied by brevity penalty (penalizes short translations)

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
 Typically $n = 4$, $w_i = 1/4$

$$\mathrm{BP} = \left\{ \begin{array}{ll} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \leq r \end{array} \right. \quad \text{r = length of reference} \\ \text{c = length of prediction}$$

Word Alignment

Word Alignment

▶ Input: a bitext, pairs of translated sentences nous acceptons votre opinion . ||| we accept your view nous allons changer d'avis ||| we are going to change our minds

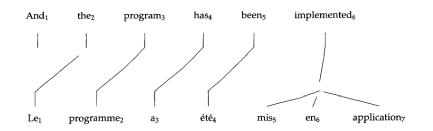
 Output: alignments between words in each sentence

▶ We will see how to turn these into phrases

"accept and acceptons are aligned"

nous
acceptons
votre
opinion

1-to-Many Alignments



Word Alignment

- ▶ Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model
- $\textbf{ Latent variable model: } P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f},\mathbf{a}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}|\mathbf{a},\mathbf{e})P(\mathbf{a})$
- ▶ Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

IBM Model 1

▶ Each French word is aligned to at most one English word

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i)$$

e Thank you, I shall do so gladly.

- f Gracias, lo hare de muy buen grado
- ▶ Set P(a) uniformly (no prior over good alignments)

 $ightharpoonup P(f_i|e_{a_i})$: word translation probability table. Learn with EM

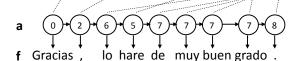
Brown et al. (1993)

HMM for Alignment

▶ Sequential dependence between a's to capture monotonicity

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i}) P(a_i|a_{i-1})$$

Thank you , I shall do so gladly



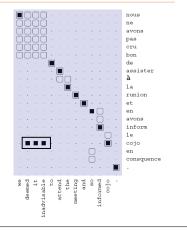
▶ Alignment dist parameterized by jump size: P(a_i - a_{i-1}) -

 $ightharpoonup P(f_i|e_{a_i})$: same as before

Vogel et al. (1996)

HMM Model

- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (*garbage collection*)

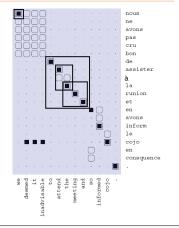


Phrase Extraction

 Find contiguous sets of aligned words in the two languages that don't have alignments to other words

d'assister à la reunion et ||| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we

Lots of phrases possible, count across all sentences and score by frequency



Decoding

Recall: *n*-gram Language Models

$$P(\mathbf{w}) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)\dots$$

• *n*-gram models: distribution of next word is a multinomial conditioned on previous *n*-1 words $P(w_i|w_1,\ldots,w_{i-1})=P(w_i|w_{i-n+1},\ldots,w_{i-1})$

I visited San _____ put a distribution over the next word

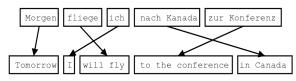
$$P(w|\text{visited San}) = \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})}$$

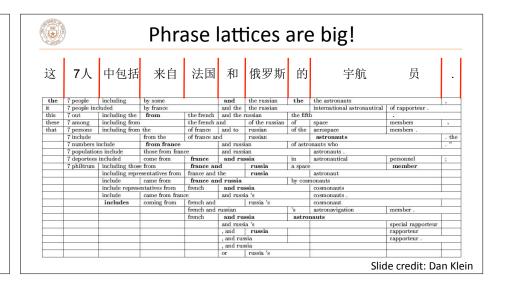
Maximum likelihood estimate of this 3gram probability from a corpus

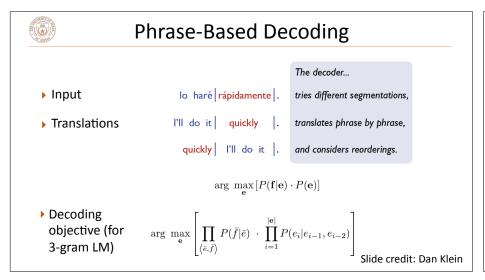
▶ Typically use ~5-gram language models for translation

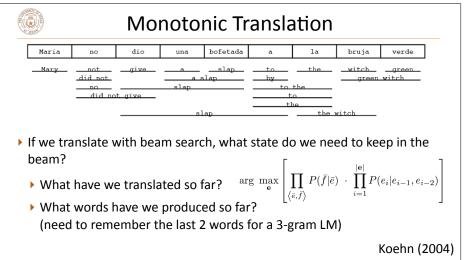
Phrase-Based Decoding

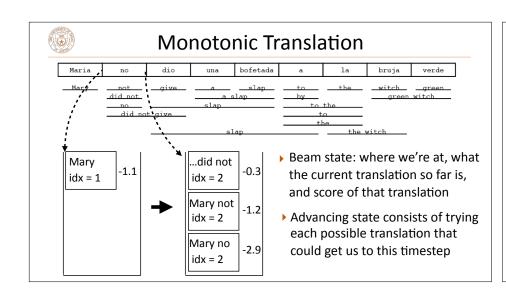
- Inputs:
 - ightharpoonup n-gram language model: $P(e_i|e_1,\ldots,e_{i-1}) pprox P(e_i|e_{i-n-1},\ldots,e_{i-1})$
 - ▶ Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)
- ▶ What we want to find: **e** produced by a series of phrase-by-phrase translations from an input **f**, possibly with reordering:

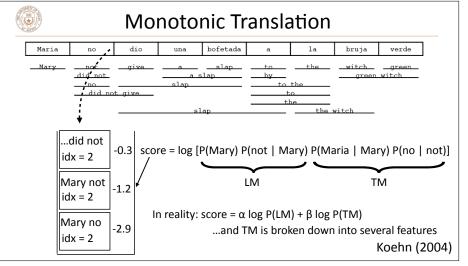


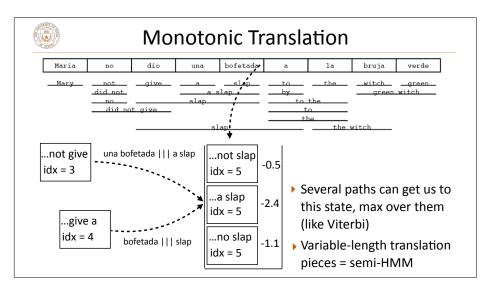


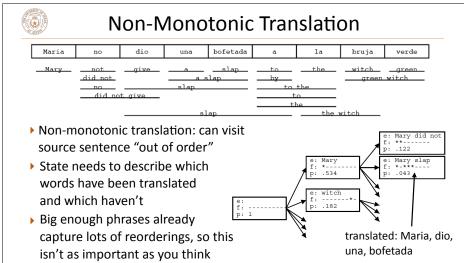








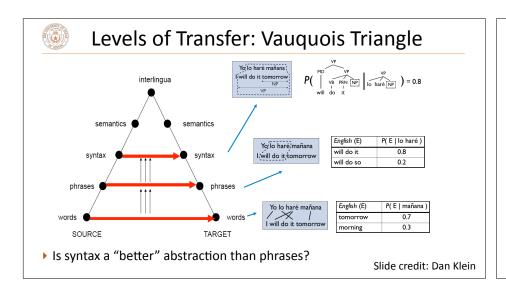


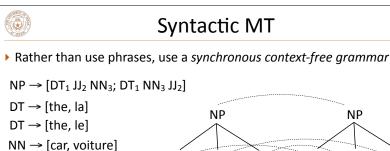


Moses

- ▶ Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
 - ▶ Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus training regimes and more
 - ▶ Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2015
- ▶ Next time: results on these and comparisons to neural methods

Syntax





 DT_1

► Translation = parse the input with "half" of the grammar, read off the other half

 JJ_2

the yellow car

 NN_3

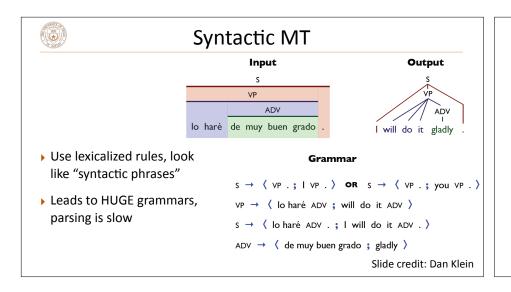
 DT_1 NN_3

la voiture jaune

 JJ_2

▶ Assumes parallel syntax up to reordering

 $JJ \rightarrow [yellow, jaune]$



Takeaways

- Phrase-based systems consist of 3 pieces: aligner, language model, decoder
 - ▶ HMMs work well for alignment
 - ▶ N-gram language models are scalable and historically worked well
 - Decoder requires searching through a complex state space
- ▶ Lots of system variants incorporating syntax
- Next time: neural MT