CS388: Natural Language Processing

Lecture 17:
Machine
Translation 2

Greg Durrett

Administrivia

Project 2 due Thursday

Recall: Phrase-Based MT

cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
...

Phrase table P(f|e)

Unlabeled English data

$$P(e|f) \propto P(f|e)P(e)$$

Noisy channel model: combine scores from translation model + language model to translate foreign to English

"Translate faithfully but make fluent English"

Recall: HMM for Alignment

Sequential dependence between a's to capture monotonicity

$$P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod_{i=1}^{n} P(f_i|e_{a_i})P(a_i|a_{i-1})$$

f	$t(f \mid e)$
nationale	0.469
national	0.418
nationaux	0.054
nationales	0.029

- Alignment dist parameterized by jump size: $P(a_j a_{j-1})$ –
- $P(f_i|e_{a_i})$: word translation table

Brown et al. (1993)

Recall: Decoding

This Lecture

Neural MT details

Tokenization

Google's NMT system

Transformers for MT

Neural MT

Encoder-Decoder MT

- Sutskever seq2seq paper: first major application of LSTMs to NLP
- Basic encoder-decoder with beam search

Method	test BLEU score (ntst14)
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

► SOTA = 37.0 — not all that competitive...

Encoder-Decoder MT

Better model from seq2seq lectures: encoder-decoder with attention and copying for rare words

distribution over vocab + copying

Results: WMT English-French

12M sentence pairs

Classic phrase-based system: ~33 BLEU, uses additional target-language data

Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

Sutskever+ (2014) seq2seq single: 30.6 BLEU

Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU

Luong+ (2015) seq2seq ensemble with attention and rare word handling: **37.5** BLEU

But English-French is a really easy language pair and there's tons of data for it

Results: WMT English-German

4.5M sentence pairs

Classic phrase-based system: 20.7 BLEU

Luong+ (2014) seq2seq: 14 BLEU

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

- BLEU isn't comparable across languages, but this performance still isn't as good
- French, Spanish = easiest
 German, Czech, Chinese = harder
 Japanese, Russian = hard (grammatically different, lots of morphology...)

MT Examples

src	In einem Interview sagte Bloom jedoch, dass er und Kerr sich noch immer lieben.
ref	However, in an interview, Bloom has said that he and <i>Kerr</i> still love each other.
best	In an interview, however, Bloom said that he and $Kerr$ still love.
base	However, in an interview, Bloom said that he and Tina were still < unk > .

- best = with attention, base = no attention
- NMT systems can hallucinate words, especially when not using attention
 - phrase-based doesn't do this

MT Examples

src	Wegen der von Berlin und der Europäischen Zentralbank verhängten strengen Sparpolitik in
	Verbindung mit der Zwangsjacke, in die die jeweilige nationale Wirtschaft durch das Festhal-
	ten an der gemeinsamen Währung genötigt wird, sind viele Menschen der Ansicht, das Projekt
	Europa sei zu weit gegangen
ref	The austerity imposed by Berlin and the European Central Bank, coupled with the straitjacket
	imposed on national economies through adherence to the common currency, has led many people
	to think Project Europe has gone too far.
best	Because of the strict austerity measures imposed by Berlin and the European Central Bank in
	connection with the straitjacket in which the respective national economy is forced to adhere to
	the common currency, many people believe that the European project has gone too far.
base	Because of the pressure imposed by the European Central Bank and the Federal Central Bank
	with the strict austerity imposed on the national economy in the face of the single currency,
	many people believe that the European project has gone too far.

best = with attention, base = no attention

Luong et al. (2015)

Backtranslation

- ▶ Classical MT methods used a bilingual corpus of sentences B = (S, T) and a large monolingual corpus T' to train a language model. Can neural MT do the same?
- Approach 1: force the system to generate T' as targets from null inputs

```
S<sub>1</sub>, t<sub>1</sub>
S<sub>2</sub>, t<sub>2</sub>
...

[null], t'<sub>1</sub>
[null], t'<sub>2</sub>
...
```

Approach 2: generate synthetic sources with a T->S machine translation system (backtranslation)

```
S<sub>1</sub>, t<sub>1</sub>
S<sub>2</sub>, t<sub>2</sub>
...
MT(t'<sub>1</sub>), t'<sub>1</sub>
MT(t'<sub>2</sub>), t'<sub>2</sub>
```

Sennrich et al. (2015)

Backtranslation

name	training			BL	EU	
	data instances		tst2011	tst2012	tst2013	tst2014
baseline (Gülçehre et al., 2015)			18.4	18.8	19.9	18.7
deep fusion (Gi	ilçehre et al., 2015)		20.2	20.2	21.3	20.6
baseline	parallel	7.2m	18.6	18.2	18.4	18.3
parallel _{synth} parallel _{parallel_{synth} 6m/6m}		19.9	20.4	20.1	20.0	
Gigaword _{mono}	parallel/Gigaword _{mono}	7.6m/7.6m	18.8	19.6	19.4	18.2
Gigawordsynth	parallel/Gigaword _{synth}	8.4m/8.4m	21.2	21.1	21.8	20.4

- Gigaword: large monolingual English corpus
- parallel_{synth}: backtranslate training data; makes additional noisy source sentences which could be useful

Sennrich et al. (2015)

Tokenization

Handling Rare Words

- Words are a difficult unit to work with: copying can be cumbersome, word vocabularies get very large
- Character-level models don't work well
- Compromise solution: use thousands of "word pieces" (which may be full words but may also be parts of words)

```
Input: _the _eco tax _port i co _in _Po nt - de - Bu is ...

Output: _le _port ique _éco taxe _de _Pont - de - Bui s
```

 Can achieve transliteration with this, subword structure makes some translations easier to achieve
 Sennrich et al. (2016)

Byte Pair Encoding (BPE)

Start with every individual byte (basically character) as its own symbol

```
for i in range(num_merges):
   pairs = get_stats(vocab)
   best = max(pairs, key=pairs.get)
   vocab = merge_vocab(best, vocab)
```

- Count bigram character
 cooccurrences in dictionary
- Merge the most frequent pair of adjacent characters
- Vocabulary stats are weighted over a large corpus
- Doing 30k merges => vocabulary of around 30,000 word pieces. Includes many whole words

```
and there were no re_ fueling stations anywhere one of the city 's more un_ princi_ pled real estate agents
```

Sennrich et al. (2016)

Word Pieces

Alternative to BPE

while voc size < target voc size:

Build a language model over your corpus

Merge pieces that lead to highest improvement in language model perplexity

- Issues: what LM to use? How to make this tractable?
- ► SentencePiece library from Google: unigram LM
- Result: way of segmenting input appropriate for translation

Schuster and Nakajima (2012), Wu et al. (2016), Kudo and Richardson (2018)

Comparison

```
furiously
                                                 Original:
          Original:
                                                            tricycles
                                                    BPE:
             BPE:
                                                               ric
                                     (b)
(a)
                     _fur
                           iously
                                                                         cles
                          ious | ly
                                            Unigram LM:
     Unigram LM:
                     _fur
                                                                 cycle
         Original:
                     Completely preposterous suggestions
                     _Comple |
                                  ely
                                         _prep | ost |
(c)
             BPE:
                                                               _suggest | ions
                                                     erous
                                        _pre | post | er | ous |
                                                               _suggestion | s
     Unigram LM:
                      _Complete | ly
```

- BPE produces less linguistically plausible units than word pieces (unigram LM)
- Some evidence that unigram LM works better in pre-trained transformer models

Subword Regularization

Domain

Subwords (_ means spaces)	Vocabulary id sequence
_Hell/o/_world	13586 137 255
_H/ello/_world	320 7363 255
_He/llo/_world	579 10115 255
_/He/l/l/o/_world	7 18085 356 356 137 255
H/el/l/o//world	320 585 356 137 7 12295

(size)	Corpus	pair	(BPE)	(SR)
Web	IWSLT15	$en \rightarrow vi$	13.86	17.36*
(5k)		$vi \rightarrow en$	7.83	11.69*
		$en \rightarrow zh$	9.71	13.85*
		$zh \rightarrow en$	5.93	8.13*
	IWSLT17	$en \rightarrow fr$	16.09	20.04*
		$fr \rightarrow en$	14.77	19.99*
	WMT14	$en \rightarrow de$	22.71	26.02*
		$de \rightarrow en$	26.42	29.63*
		$en \rightarrow cs$	19.53	21.41*
		$cs \rightarrow en$	25.94	27.86*

Language

Change subword sampling on-thefly during training

> Subword regularization (SR) improves results over a static scheme (BPE)

Proposed

Baseline

Google NMT

Google's NMT System

▶ 8-layer LSTM encoder-decoder with attention, word piece vocabulary of 8k-32k Wu et al. (2016)

Google's NMT System

English-French:

Google's phrase-based system: 37.0 BLEU

Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU

Google's 32k word pieces: 38.95 BLEU

English-German:

Google's phrase-based system: 20.7 BLEU

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

Google's 32k word pieces: 24.2 BLEU

Human Evaluation (En-Es)

Similar to human-level performance on English-Spanish

Count (total 500)

Wu et al. (2016)

Google's NMT System

Source	She was spotted three days later by a dog walker trapped in the quarry	
$\overline{\ \ PBMT}$	Elle a été repéré trois jours plus tard par un promeneur de chien piégé dans la carrière	6.0
$\overline{\text{GNMT}}$	Elle a été repérée trois jours plus tard par un traîneau à chiens piégé dans la carrière.	2.0
Human	Elle a été repérée trois jours plus tard par une personne qui promenait son chien coincée dans la carrière	5.0

Gender is correct in GNMT but not in PBMT

" "walker"

Frontiers in MT: Small Data

		BLEU	
ID	system	100k	3.2M
1	phrase-based SMT	15.87 ± 0.19	26.60 ± 0.00
2	NMT baseline	0.00 ± 0.00	25.70 ± 0.33
3	2 + "mainstream improvements" (dropout, tied embeddings, layer normalization, bideep RNN, label smoothing)	7.20 ± 0.62	31.93 ± 0.05
4	3 + reduce BPE vocabulary (14k \rightarrow 2k symbols)	12.10 ± 0.16	_
5	4 + reduce batch size $(4k \rightarrow 1k \text{ tokens})$	12.40 ± 0.08	31.97 ± 0.26
6	5 + lexical model	13.03 ± 0.49	31.80 ± 0.22
7	5 + aggressive (word) dropout	15.87 ± 0.09	33.60 ± 0.14
8	7 + other hyperparameter tuning (learning rate, model depth, label smoothing rate)	16.57 ± 0.26	32.80 ± 0.08
9	8 + lexical model	16.10 ± 0.29	33.30 ± 0.08

Synthetic small data setting: German -> English

Sennrich and Zhang (2019)

Frontiers in MT: Low-Resource

 Particular interest in deploying MT systems for languages with little or no parallel data

- BPE allows us to transfer models even without training on a specific language
- Pre-trained models can help further

Burmese, Indonesian, Turkish BLEU

Transfer	My→En	Id→En	Tr→En
baseline (no transfer)	4.0	20.6	19.0
transfer, train	17.8	27.4	20.3
transfer, train, reset emb, train	13.3	25.0	20.0
transfer, train, reset inner, train	3.6	18.0	19.1

Table 3: Investigating the model's capability to restore its quality if we reset the parameters. We use $En \rightarrow De$ as the parent.

Transformers for MT

Recall: Self-Attention

► Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = \operatorname{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{j=1}^n lpha_{i,j} x_j$ vector = sum of scalar * vector

Multi-head self attention: we are going to replicate this machinery several times with different parameters

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let X = [sent len, embedding dim] be the input sentence
- Query $Q = W^QX$: these are like the decoder hidden state in attention
- Keys $K = W^K X$: these control what gets attended to, along with the query
- ▶ Values $V = W^{V}X$: these vectors get summed up to form the output

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
 dim of keys

Multi-Head Self Attention

Multi-Head Self Attention

Alammar, The Illustrated Transformer sent len x sent len (attn for each word to each other)

sent len x hidden dim

Z is a weighted combination of V rows

Properties of Self-Attention

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

- ▶ n = sentence length, d = hidden dim, k = kernel size, r = restricted neighborhood size
- ▶ Quadratic complexity, but O(1) sequential operations (not linear like in RNNs) and O(1) "path" for words to inform each other

Transformers

- Alternate multi-head self-attention layers and feedforward layers
- Residual connections let the model "skip" each layer
 - these are particularly useful for training deep networks

Transformers: Position Sensitivity

The ballerina is very excited that she will dance in the show.

▶ If this is in a longer context, we want words to attend *locally*

But transformers have no notion of position by default

Transformers: Position Sensitivity

- Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points = higher dot products
- Works essentially as well as just encoding position as a one-hot vector Vaswani et al. (2017)

Transformers

Alammar, The Illustrated Transformer

Embedding dim

Transformers: Complete Model

Encoder and decoder are both transformers

Decoder alternates attention over the output and attention over the input as well

Decoder consumes the previous generated tokens but has no recurrent state

Transformers

N/ada1	BLEU		
Model	EN-DE	EN-FR	
ByteNet [18]	23.75		
Deep-Att + PosUnk [39]		39.2	
$\overline{GNMT} + RL [38]$	24.6	39.92	
ConvS2S [9]	25.16	40.46	
MoE [32]	26.03	40.56	
Deep-Att + PosUnk Ensemble [39]		40.4	
GNMT + RL Ensemble [38]	26.30	41.16	
ConvS2S Ensemble [9]	26.36	41.29	
Transformer (base model)	27.3	38.1	
Transformer (big)	28.4	41.8	

Big = 6 layers, 1000 dim for each token, 16 heads,
 base = 6 layers + other params halved

Visualization

Visualization

Takeaways

- Can build MT systems with LSTM encoder-decoders or transformers (or CNNs)
- Word piece / byte pair models are really effective and easy to use
- State of the art systems are getting pretty good, but lots of challenges remain, especially for low-resource settings
- Next time: pre-trained transformer models (BERT), applied to other tasks