CS388: Natural Language Processing

Lecture 18:

Pre-training 1:

BERT

Greg Durrett

Administrivia

- ▶ Project 2 due today (last assignment to use slip days on)
- Presentation day announcements next week

Recall: Self-Attention

► Each word forms a "query" which then computes attention over each word

$$\alpha_{i,j} = \operatorname{softmax}(x_i^\top x_j) \quad \text{scalar}$$

$$x_i' = \sum_{j=1}^n \alpha_{i,j} x_j \quad \text{vector = sum of scalar * vector}$$

Vaswani et al. (2017)

This Lecture

- **▶** BERT
- ▶ BERT Results, Extensions
- ▶ Analysis/Visualization of BERT
- ▶ GPT/GPT2

BERT

BERT

- ▶ Al2 released ELMo in spring 2018, GPT was released in summer 2018, BERT came out October 2018
- ▶ Three major changes compared to ELMo:
 - ▶ Transformers instead of LSTMs (transformers in GPT as well)
 - ▶ Bidirectional <=> Masked LM objective instead of standard LM
 - ▶ Fine-tune instead of freeze at test time

BERT Results, Extensions

Fine-tuning BERT

▶ Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5

- ▶ Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- ▶ Smaller changes to weights lower down in the transformer
- ► Small LR and short fine-tuning schedule mean weights don't change much
- ► More complex "triangular learning rate" schemes exist

Fine-tuning BERT

Pretraining	Adaptation	NER CoNLL 2003	SA SST-2	Nat. lang. inference MNLI SICK-E		Semantic textual sim		milarity STS-B
Skip-thoughts	泰	-	81.8	62.9	-	86.6	75.8	71.8
	*	91.7	91.8	79.6	86.3	86.1	76.0	75.9
ELMo	&	91.9	91.2	76.4	83.3	83.3	74.7	75.5
	$\Delta = 0$ -	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4
	*	92.2	93.0	84.6	84.8	86.4	78.1	82.9
BERT-base	ĕ	92.4	93.5	84.6	85.8	88.7	84.8	87.1
	Δ=∅-∰	0.2	0.5	0.0	1.0	2.3	6.7	4.2

▶ BERT is typically better if the whole network is fine-tuned, unlike ELMo

Peters, Ruder, Smith (2019)

Evaluation: GLUE

Corpus	Train	Test	Task	Metrics	Domain			
Single-Sentence Tasks								
CoLA	8.5k	1k	acceptability	acceptability Matthews corr.				
SST-2	67k	1.8k	sentiment	acc.	movie reviews			
Similarity and Paraphrase Tasks								
MRPC	3.7k	1.7k	paraphrase acc./F1		news			
STS-B	7k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.			
QQP	364k	391k	paraphrase	acc./F1	social QA questions			
			Infere	ence Tasks				
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.			
QNLI	105k	5.4k	QA/NLI	DA/NLI acc.				
RTE	2.5k	3k	NLI	acc.	Wikipedia news, Wikipedia			
WNLI	634	146	coreference/NLI	acc.	fiction books			

Wang et al. (2019)

Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- ▶ Huge improvements over prior work (even compared to ELMo)
- ▶ Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Devlin et al. (2018)

SQuAD

Subsequent Improvements to BERT

 Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them

epoch 2

epoch 1

... John visited Madagascar yesterday ...

▶ Whole word masking: don't mask out parts of words

... John visited Mada gas car yesterday ...

Liu et al. (2019)

RoBERTa

 "Robustly optimized BERT" incorporating some of these tricks

Model	data	bsz	steps	(v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}	12CD	256	13.6	00.0/01.0	96.6	02.7
with BOOKS + WIKI	13GB	256	1M	90 9/81 8	86.6	93.7

- ▶ 160GB of data instead of 16 GB
- ▶ New training + more data = better performance

Liu et al. (2019)

ALBERT

▶ Factorized embedding matrix to save parameters, model context-independent words with fewer parameters
 Ordinarily |V| x H — |V| is 30k-90k, H is >1000

Factor into two matrices with a low-rank approximation

Now: $|V| \times E$ and $E \times H - E$ is 128 in their implementation

▶ Additional cross-layer parameter sharing

Lan et al. (2020)

ELECTRA

- ▶ No need to necessarily have a generative model (predicting words)
- ▶ This objective is more computationally efficient (trains faster) than the standard BERT objective

Clark et al. (2020)

BERT/MLMs

- ▶ There are lots of ways to train these models!
- ▶ Key factors:
- ▶ Big enough model
- ▶ Big enough data
- ▶ Well-designed "self-supervised" objective (something like language modeling). Needs to be a hard enough problem!

Analysis/Visualization of BERT

BERTology

- (1) How can we probe syntactic + semantic knowledge of BERT? What does BERT "know" in its representations?
- (2) What can we learn from looking at attention heads?
- (3) What can we learn about training BERT (more efficiently, etc.)?

Rogers et al. (2020)

 Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.
 Clark et al. (2019)

Compressing BERT

- Remove 60+% of BERT's heads post-training with minimal drop in performance
- DistilBERT (Sanh et al., 2019): nearly as good with half the parameters of BERT (via knowledge distillation)

(b) Evolution of accuracy on the MultiNLI-matched validation set when heads are pruned from BERT according to I_h (solid blue) and accuracy difference (dashed green).

Michel et al. (2019)

GPT/GPT2

OpenAI GPT/GPT2

- ▶ "ELMo with transformers" (works better than ELMo)
- Train a single unidirectional transformer LM on long contexts
- GPT2: trained on 40GB of text collected from upvoted links from reddit
- ▶ 1.5B parameters by far the largest of these models trained as of March 2019

Parameters	Layers	d_{model}
117 M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

▶ Because it's a language model, we can generate from it

Radford et al. (2019)

OpenAl GPT2

SYSTEM PROMPT
(HUMAN-WRITTEN)

MODEL COMPLETION
(MACHINE-WRITTEN, SECOND TRY)

The 19-year-old singer was caught on camera being escorted out of the store by security guards.

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today (pictured)

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back

The singer was also wearing a pair of black-rimmed glasses, a black jacket, black jeans and black sandals.

She was carrying a pair of black and white striped gloves and a small black bag.

slide credit: OpenAl

Open Questions

- 1) How novel is the stuff being generated? (Is it just doing nearest neighbors on a large corpus?)
- 2) How do we understand and distill what is learned in this model?
- 3) How do we harness these priors for conditional generation tasks (summarization, generate a report of a basketball game, etc.)
- 4) Is this technology dangerous?

Grover

- ▶ Sample from a large language model conditioned on a domain, date, authors, and headline
- ▶ Humans rank Grover-generated propaganda as more realistic than real "fake news"
- Fine-tuned Grover can detect Grover propaganda easily authors argue for releasing it for this reason
- NOTE: Not a GAN, discriminator trained separately from the generator

		Un	paired A	Accurac	y Pai	ired Ac	curacy		
		Generator size			G	Generator size			
		1.5B	355M	124M	1.5B	355M	124M		
	Chance		50.0			50.0			
1.5B	Grover-Mega	92.0	98.5	99.8	97.4	100.0	100.0		
	GROVER-Large	80.8	91.2	98.4	89.0	96.9	100.0		
355M	BERT-Large	73.1	75.9	97.5	84.1	91.5	99.9		
	GPT2	70.1	78.0	90.3	78.8	87.0	96.8		
5	Grover-Base	70.1	80.0	89.2	77.5	88.2	95.7		
124M	BERT-Base	67.2	76.6	84.1	80.0	89.5	96.2		
•	GPT2	66.2	71.9	83.5	72.5	79.6	89.6		
11M	FactText	63.8	65.6	60.7	11 65 0	60.0	74.4		

Zellers et al. (2019)

Takeaways

- ▶ BERT-based systems are state-of-the-art for nearly every major text analysis task
- ▶ Transformers + lots of data + self-supervision seems to do very well
- ▶ Lots of work studying and analyzing these, but few "deep" conclusions have emerged
- Next time: modifications of these (BART/T5, GPT-3, etc.)