CS388: Natural Language Processing

Lecture 2: Binary Ce

da/ase[

Classification Class 1

Perfectly balanced...

-\

_

Greg Durrett
...As all things should be
TEXAS credit: Machine Learning Memes on Facebook

The University of Texas at Austin

Some slides adapted from Vivek Srikumar, University of Utah

Administrivia
» Mini 1 out, due next Thursday

» Waitlist is processed

This Lecture
» Linear binary classification fundamentals
» Feature extraction
» Logistic regression
» Perceptron/SVM

» Optimization

» Sentiment analysis

Linear Binary Classification

Classification
» Datapoint 2 with label ¥ € {0,1}
» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and z are interchangeable

» Linear decision rule: w' f(z) > 0 / *

(No bias term b — we have AN

lots of features and it isn’t -

needed) -

Linear functions are powerful!

\ X2 X1X2

\ X1

fix) = [x1, x2] f(x) = [X1, X2, X12, X22, X1X2]
» “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n?) instead of O(n - (num feats))

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I'll never\watch again | Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors
» Pick a model / learning algorithm

» Train weights on data to get our classifier

Feature Extraction

Feature Representation

this movie was |great! would watch again ~ |Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film] ...

fix)=1o 0 1 1 0

» Very large vector space (size of vocabulary), sparse features (how many
per example?)

Feature Extraction Details

» Tokenization:

“I thought it wasn’t that great!” critics complained.
“[| thought it was n’t that great ! ” critics complained .
» Split out punctuation

» Split out contractions
» Handle hyphenated compounds

» Buildings the feature vector requires indexing the features (mapping
them to axes). Store an invertible map from string -> index

» [contains “the”] is a single feature — put this whole bracketed thing into
the indexer to give it a position in the feature space

Features for Person Name Detection

O O PER O PER O OO O 0]
On Sunday, Thomas and Mary went to the farmer’s market

» Do bag-of-words features work here?

[contains On] [contains and] [contains is] [contains Thomas]
=11 1 0 1

» Everyone word in the sequence gets the same features — can’t tell if a
word is O or PER, everything gets the same label

» Instead we need position-sensitive features

Features for Person Name Detection

O O PER O PER O OO O (0]
On Sunday, Thomas and Mary went to the farmer’s market
i=0 1 2 3 4 5 67 8 9

» Features are now a function of position, each word has a separate vector
» What features make sense?

» “Current word”: what is the word at this index?
» “Previous word”: what is the word that precedes the index?

[currWord=Thomas] [currWord=Mary] [prevWord = and]
flx, i=4) = 0 1 1

» All features coexist in the same space! Other feats (char level, ...) possible

Logistic Regression

Logistic Regression

P(y = +|z) = logistic(w ' x)

eXP(Z?:l w;T;)

P — —
=) = T e, w)

» To learn weights: maximize discriminative log likelihood of data (log P(y|x))
L{xj,yi}i=1,..n) = Z log P(y;|z;) corpus-level LL

J
L(xj,y; =+) =log P(y; = +|x;) one (positive) example LL

n n
= Z w;Tj; — log (1 + exp (Z wix_ﬂ))
i=1

sum over features/ i=1

Logistic Regression

C(.’L’j7yj = +) = log P(yj = +‘$]) = szdﬁﬂ — log <]. + exp (Z Wi 5
i=1

i=1

oL (‘ij yj)
8wi

€Xp (2?:1 wﬂjz‘)

=TT T o 0wy = Sai(E P =)

)

Logistic Regression
» Gradient of w on positive example = x(1 — P(y = + | x))
If P(+ | x) is close to 1, make very little update
Otherwise make w look more like x, which will increase P(+ | x)

» Gradient of w on negative example = x(—P(y = + | x))

If P(+ | x) is close to 0, make very little update
Otherwise make w look less like x, which will decrease P(+ | x)
» Let y = 1 for positive instances, y = 0 for negative instances.

» Can combine these gradients as x(y — P(y =1 | x))

Example

g'"(l) this movie was great! would watch again ~ + fix)) =1 1]
(2) I expected a great movie and left happy + fix2) =11 1]
(3) great potential but ended up being a flop — fixs) = [1 0]

[contains great] [contains movie]

w=1[0,0] — P(y=1|x1) =exp(0)/(1+exp(0))=0.5— g=[0.5,0.5]
w =[0.5,0.5] — P(y =1 | x2) = logistic(1) ~ 0.75 ——— g =[0.25, 0.25]
w = [0.75, 0.75] = P(y = 1 | x3) = logistic(0.75) = 0.67 — g = [-0.67, 0]

w =[0.08, 0.75] P(y = +|z) = logistic(w ' z)
zj(y; — P(y; = 1]z5))

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> Llxj,y;) = Allwl3
=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
» We always stop early before full convergence
» Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping

Logistic Regression: Summary

» Model
P(y = —Hx) — eXp(ZzT'L:I wixi)
L+ eXp(ZZ‘L:1 wﬂ'i)
» Inference

argmax, P(y|z)
Ply=1lz) > 05w z>0

» Learning: gradient ascent on the (regularized) discriminative log-likelihood

Perceptron/SVM

Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decision rule: wa >0 Logistic Regression
» If incorrect: if positive, w < w + x

if negative, w <~ w — = w < w—zP(y = 1|z)

» Guaranteed to eventually separate the data if the data are separable

Support Vector Machines

» Many separating hyperplanes — is there a best one?

Support Vector Machines

» Many separating hyperplanes — is there a best one?

+ ++
Tt t o+
A

e margin

» Max-margin hyperplane found by SVMs

Perceptron and Logistic Losses

» Throughout this course: view classification as minimizing loss

» Let’s focus on loss of a positive example
0 ifwix>0

» Perceptron: loss =
-wix if wix< 0

Take the gradient: no update if wix > 0, else update with +x)

» Logistic regression: loss = — log P(+|x)

(maximizing log likelihood = minimizing negative log likelihood)

Gradients on Positive Examples

Logistic regression

~

T
x(1 — logistic(w ' z)) as

Perceptron 25

zifw'z <0, else 0

Loss

SVM (ignoring regularizer)

-3 -2 -1 0 1 2

*gradients are for maximizing things,
which is why they are flipped

1w
.) Logisti
zifw'z <1, else 0 0-1 \’\
, L|Perceptron N |

Comparing Gradient Updates (Reference)

Logistic regression (unregularized) y = 1 for pos,
z(y — Py = 1|z)) = 2(y — logistic(w ' z)) 0 for neg
Perceptron

(2y — 1)z if classified incorrectly
0 else

SVM
(2y — 1)x if not classified correctly with margin of 1

0 else

Optimization

Structured Prediction

» Four elements of a structured machine learning method:

» Model: probabilistic, max-margin, deep neural network

» Objective

35
3
25
2

15

L

3 2 Bl 0 1 2 3

» Inference: just maxes and simple expectations so far, but will get harder

» Training: gradient descent?

Optimization

. —_ * 0

» Stochastic gradient *ascent W wtag, g= 8_£

» Very simple to code up w

» “First-order” technique: only relies on having gradient

» Can avg gradient over a few examples and apply update once (minibatch)

» Setting step size is hard (decrease when held-out performance worsens?)

2 N\
w<—w+<aw2£> g

Inverse Hessian: n x n mat, expensive!

» Newton’s method
» Second-order technique

» Optimizes quadratic instantly

» Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

AdaGrad

» Optimized for problems with sparse features

» Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

1
it 5 gt
€ + ZT:1 gT,’i ¢

» Generally more robust than SGD, requires less tuning of learning rate

w; — w; + @

(smoothed) sum of squared
gradients from all updates

» Other techniques for optimizing deep models — more later!

Duchi et al. (2011)

Implementation

» Supposing k active features on an instance, gradient is only nonzero
on k dimensions

0
w — w + ag, g:%ﬁ

» k <100, total num features = 1M+ on many problems
» Be smart about applying updates!

» In PyTorch: applying sparse gradients only works for certain

optimizers and sparse updates are very slow. The code we give you is
much faster

Sentiment Analysis

Sentiment Analysis

this movie was great! would watch again +

the movie wasgross and overwrought, but I liked it |+

this movie was not really very enjoyable —

» Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X” for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features # of frequency or || NB ME SVM
features presence?

(1) unigrams 16165 freq. 78.7 | N/A 72.8
(2) unigrams K pres. 81.0 | 804 82.9
(3) | unigrams+bigrams | 32330 pres. 80.6 | 80.8 82.7
(4) bigrams 16165 pres. 773 | 774 77.1
(5) unigrams+POS 16695 pres. 81.5 | 80.4 81.9
(6) adjectives 2633 pres. 77.0 | 777 75.1
(7) | top 2633 unigrams 2633 pres. 80.3 | 81.0 81.4
(8) | unigrams+position | 22430 pres. 81.0 80.1 81.6

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Method RT-s MPQA

MNB-uni 779 853

MNB-bi +<— Naive Bayes is doing well!
SVM-uni 762 86.1

SVM-bi 717 86.7

NBSVM-uni | 781 85.3

NBSVM-bi M 86.3 Ng and Jordan (2002) i NB
RAE 768 85.7 can be better for small data

RAE-pretrain

777 864,

Voting-w/Rev. | 63.1 81.7

Rule 629 818 \

BoF-noDic. | 757 818 Before neural nets had taken off
BoF-w/Rev. 76.4 84.1 ;

Tree-CRF 773 861 — results weren’t that great
BoWSVM - -

Kim (2014) CNNs (81.5 89.5

Wang and Manning (2012)

» Stanford Sentiment
Treebank (SST)
binary classification

» Best systems now:
large pretrained
networks

» 90 -> 97 over the
last 2 years

Sentiment Analysis

Model

XLNet-Large (ensemble) (Yang et al.,

2019)

MT-DNN-ensemble (Liu et al., 2019)

Snorkel MeTaL (ensemble) (Ratner et
al., 2018)

MT-DNN (Liu et al., 2019)
Bidirectional Encoder

Representations from Transformers
(Devlin et al., 2018)

Neural Semantic Encoder
(Munkhdalai and Yu, 2017)

BLSTM-2DCNN (Zhou et al., 2017)

Accuracy Paper [Source Code
96.8 XLNet: Generalized Aulor(.egress\ve Pretraining Official
for Language Understanding
Improving Multi-Task Deep Neural Networks
96.5 via Knowledge Distillation for Natural Language Official
Understanding
Training Complex Models with Multi-Task Weak .
96.2 N Official
Supervision
Iti-Té D | N f tural
. Multi-Task Deep Neura etworks for Natural —
Language Understanding
BERT: Pre-training of Deep Bidirectional .-
94.9 . Official
Transformers for Language Understanding
89.7 Neural Semantic Encoders
Text Classification Improved by Integrating
89.5 Bidirectional LSTM with Two-dimensional Max

Pooling

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment_analysis.md

Recap

» Logistic regression, SVM, and perceptron are closely related; we’ll use
logistic regression mostly, but the exact loss function doesn’t matter
much in practice

» All gradient updates: “make it look more like the right thing and less
like the wrong thing”

» Next time: multiclass classification

