CS388: Natural Language Processing

Lecture 2: Binary Classification

Greg Durrett

TEXAS

The University of Tayage at Austin

credit: Machine Learning Memes on Facebook

Some slides adapted from Vivek Srikumar, University of Utah

Administrivia

- Mini 1 out, due next Thursday
- ▶ Waitlist is processed

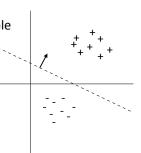
This Lecture

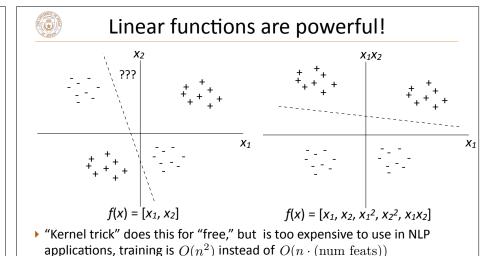
- ▶ Linear binary classification fundamentals
- ▶ Feature extraction
- ▶ Logistic regression
- Perceptron/SVM
- Optimization
- Sentiment analysis

Linear Binary Classification

Classification

- ▶ Datapoint x with label $y \in \{0, 1\}$
- ▶ Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$ but in this lecture f(x) and x are interchangeable
- ▶ Linear decision rule: $w^{\top}f(x) > 0$ (No bias term b — we have lots of features and it isn't needed)





Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was <mark>awful,</mark> I'll never watch again

Negative

- ▶ Surface cues can basically tell you what's going on here: presence or absence of certain words (*great*, *awful*)
- ▶ Steps to classification:
 - ▶ Turn examples like this into feature vectors
 - ▶ Pick a model / learning algorithm
 - ▶ Train weights on data to get our classifier

Feature Extraction

Feature Representation

this movie was great! would watch again

Positive

▶ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film] ... position 0 position 1 position 2 position 3 position 4 f(x) = [0 0 1 1 0 ...

Very large vector space (size of vocabulary), sparse features (how many per example?)

Feature Extraction Details

Tokenization:

"I thought it wasn't that great!" critics complained.

"I thought it was n't that great!" critics complained.

- Split out punctuation
- Split out contractions
- ▶ Handle hyphenated compounds
- Buildings the feature vector requires indexing the features (mapping them to axes). Store an invertible map from string -> index
 - [contains "the"] is a single feature put this whole bracketed thing into the indexer to give it a position in the feature space

Features for Person Name Detection

O O PER O PER O O O O O O O O O Sunday, Thomas and Mary went to the farmer's market

Do bag-of-words features work here?

[contains On] [contains and] [contains is] [contains Thomas] ...

position 0 position 1 position 2 position 3 $f(x) = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$

- ▶ Everyone word in the sequence gets the same features can't tell if a word is O or PER, everything gets the same label
- ▶ Instead we need position-sensitive features

Features for Person Name Detection

O O PER O PER O O O O O O O O O Sunday, Thomas and Mary went to the farmer's market

i = 0 1 2 3 4 5 6 7 8 9

- Features are now a function of position, each word has a separate vector
- What features make sense?
 - "Current word": what is the word at this index?
 - "Previous word": what is the word that precedes the index?
 [currWord=Thomas] [currWord=Mary] [prevWord = and]

 $f(x, i=4) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & \dots & 1 \end{bmatrix}$

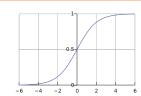
▶ All features coexist in the same space! Other feats (char level, ...) possible

Logistic Regression

Logistic Regression

$$P(y = +|x) = \operatorname{logistic}(w^{\top}x)$$

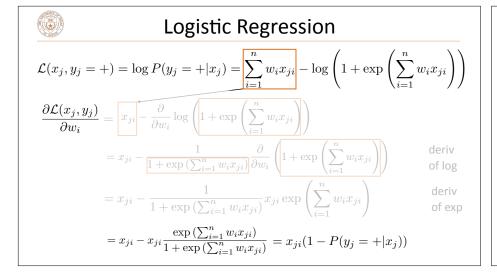
$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$



 \blacktriangleright To learn weights: maximize discriminative log likelihood of data (log P(y|x))

$$\mathcal{L}(\{x_j,y_j\}_{j=1,\dots,n}) = \sum_j \log P(y_j|x_j) \qquad \text{corpus-level LL}$$

$$\mathcal{L}(x_j,y_j=+) = \log P(y_j=+|x_j) \qquad \text{one (positive) example LL}$$
 sum over features
$$= \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right)\right)$$



Logistic Regression

- ▶ Gradient of $\textbf{\textit{w}}$ on positive example $= \mathbf{x}(1 P(y = + \mid \mathbf{x}))$ If P(+ | $\textbf{\textit{x}}$) is close to 1, make very little update
 Otherwise make $\textbf{\textit{w}}$ look more like $\textbf{\textit{x}}$, which will increase P(+ | $\textbf{\textit{x}}$)
- For Gradient of ${\it w}$ on negative example $={\bf x}(-P(y=+\mid {\bf x}))$ If P(+ $\mid {\it x}$) is close to 0, make very little update Otherwise make ${\it w}$ look less like ${\it x}$, which will decrease P(+ $\mid {\it x}$)
- Let y = 1 for positive instances, y = 0 for negative instances.
- Can combine these gradients as $\mathbf{x}(y P(y = 1 \mid \mathbf{x}))$

Example

$$+ f(x_1) = [1$$

1]

+
$$f(x_2) = [1$$

$$f(x_3) = [1 0]$$

[contains *great*] [contains *movie*] position 0 position 1

$$w = [0, 0] \longrightarrow P(y = 1 \mid x_1) = \exp(0)/(1 + \exp(0)) = 0.5 \longrightarrow g = [0.5, 0.5]$$

$$w = [0.5, 0.5] \rightarrow P(y = 1 \mid x_2) = logistic(1) \approx 0.75 \longrightarrow g = [0.25, 0.25]$$

$$w = [0.75, 0.75] \rightarrow P(y = 1 \mid x_3) = logistic(0.75) \approx 0.67 \longrightarrow g = [-0.67, 0]$$

$$w = [0.08, 0.75] \cdots$$

$$P(y = +|x) = \text{logistic}(w^{\top}x)$$
$$x_j(y_j - P(y_j = 1|x_j))$$

Regularization

▶ Regularizing an objective can mean many things, including an L2norm penalty to the weights:

$$\sum_{j=1}^{m} \mathcal{L}(x_j, y_j) - \lambda ||w||_2^2$$

- ▶ Keeping weights small can prevent overfitting
- For most of the NLP models we build, explicit regularization isn't necessary
 - ▶ We always stop early before full convergence
 - ▶ Large numbers of sparse features are hard to overfit in a really bad way
 - ▶ For neural networks: dropout and gradient clipping

Logistic Regression: Summary

Model

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

▶ Inference

$$\operatorname{argmax}_{u} P(y|x)$$

$$P(y=1|x) \ge 0.5 \Leftrightarrow w^{\top}x \ge 0$$

▶ Learning: gradient ascent on the (regularized) discriminative log-likelihood

Perceptron/SVM

Perceptron

- ▶ Simple error-driven learning approach similar to logistic regression
- $\ \, \text{ Decision rule: } w^\top x > 0 \\$
 - If incorrect: if positive, $w \leftarrow w + x$ if negative, $w \leftarrow w x$

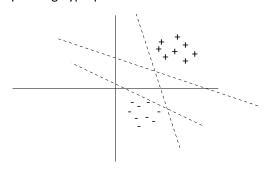
Logistic Regression

$$w \leftarrow w + x(1 - P(y = 1|x))$$
$$w \leftarrow w - xP(y = 1|x)$$

▶ Guaranteed to eventually separate the data if the data are separable

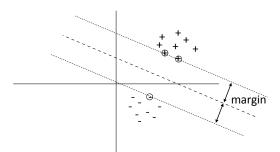
Support Vector Machines

▶ Many separating hyperplanes — is there a best one?



Support Vector Machines

▶ Many separating hyperplanes — is there a best one?



▶ Max-margin hyperplane found by SVMs

Perceptron and Logistic Losses

- ▶ Throughout this course: view classification as *minimizing loss*
- Let's focus on loss of a positive example

Perceptron: loss =
$$\begin{cases} 0 & \text{if } w^{\mathsf{T}}x > 0 \\ -w^{\mathsf{T}}x & \text{if } w^{\mathsf{T}}x < 0 \end{cases}$$

Take the gradient: no update if $w^Tx > 0$, else update with +x)

Logistic regression: loss = — log P(+|x)
 (maximizing log likelihood = minimizing negative log likelihood)

Gradients on Positive Examples

Logistic regression

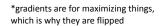
 $x(1 - \operatorname{logistic}(w^{\top}x))$

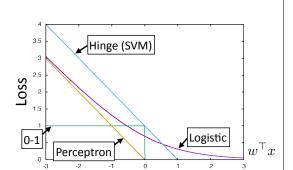
Perceptron

 $x \text{ if } w^{\top}x < 0, \text{ else } 0$

SVM (ignoring regularizer)

 $x \text{ if } w^{\top}x < 1, \text{ else } 0$





Comparing Gradient Updates (Reference)

Logistic regression (unregularized)

$$x(y - P(y = 1|x)) = x(y - \text{logistic}(w^{\top}x))$$

y = 1 for pos, 0 for neg

Perceptron

(2y-1)x if classified incorrectly

0 else

SVM

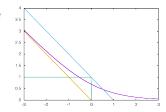
 $(2y-1)x \quad {\rm if \ not \ classified \ correctly \ with \ margin \ of \ 1}$

0 else

Optimization

Structured Prediction

- ▶ Four elements of a structured machine learning method:
- ▶ Model: probabilistic, max-margin, deep neural network
- Objective



- ▶ Inference: just maxes and simple expectations so far, but will get harder
- ▶ Training: gradient descent?

Optimization

▶ Stochastic gradient *ascent*

$$w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

- Very simple to code up
- "First-order" technique: only relies on having gradient
- ▶ Can avg gradient over a few examples and apply update once (minibatch)
- ▶ Setting step size is hard (decrease when held-out performance worsens?)
- Newton's method
- ▶ Second-order technique
- $w \leftarrow w + \left(\frac{\partial^2}{\partial w^2} \mathcal{L}\right)^{-1} g$
- Optimizes quadratic instantly

Inverse Hessian: *n* x *n* mat, expensive!

▶ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

$$w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{\tau=1}^t g_{\tau,i}^2}} g_{t_i} \tag{smoothed) sum of squared gradients from all updates}$$

- ▶ Generally more robust than SGD, requires less tuning of learning rate
- ▶ Other techniques for optimizing deep models more later!

Duchi et al. (2011)

Implementation

 Supposing k active features on an instance, gradient is only nonzero on k dimensions

$$w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L}$$

- \triangleright k < 100, total num features = 1M+ on many problems
- ▶ Be smart about applying updates!
- ▶ In PyTorch: applying sparse gradients only works for certain optimizers and sparse updates are very slow. The code we give you is much faster

Sentiment Analysis

Sentiment Analysis

this movie was great! would watch again

+

the movie was gross and overwrought, but I liked it

this movie was not really very enjoyable

- Bag-of-words doesn't seem sufficient (discourse structure, negation)
- ▶ There are some ways around this: extract bigram feature for "not X" for all X following the not

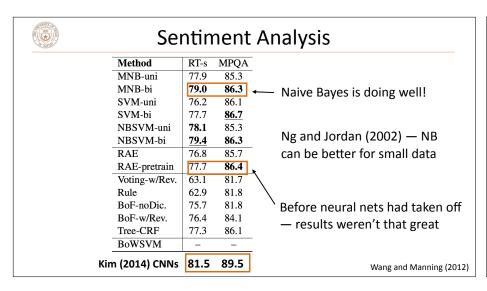
Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

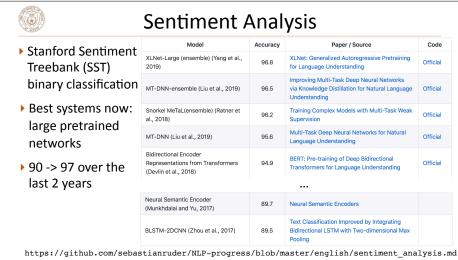
Sentiment Analysis

	Features	# of	frequency or	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

▶ Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)





Recap

- ▶ Logistic regression, SVM, and perceptron are closely related; we'll use logistic regression mostly, but the exact loss function doesn't matter much in practice
- All gradient updates: "make it look more like the right thing and less like the wrong thing"
- Next time: multiclass classification