Administrivia

- Course enrollment
- Mini 1 due Thursday at midnight (submit writeup on Gradescope + code/output on Canvas)
Recall: Feature Extraction

On Sunday, Thomas and Mary went to the farmer’s market

\[i = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \]

- Feature extractor: function from (sentence, position) => sparse feature vector describing that position in the sentence
 - “Current word”: what is the word at this index?
 - “Previous word”: what is the word that precedes the index?

\[
\text{currWord} = \begin{cases}
 \text{Thomas} & \text{if } i = 4 \\
 \text{Mary} & \text{if } i = 8 \\
 \text{and} & \text{if } i = 5
\end{cases}
\]

\[f(x, i=4) = [0 \quad 1 \quad 1 \quad \ldots] \]

- Feature vector only has 2 nonzero entries out of 10k+ possible
- All features coexist in the same space! Other feats (char level, ...) possible
Recall: Binary Classification

Logistic regression: \[P(y = 1|x) = \frac{\exp \left(\sum_{i=1}^{n} w_i x_i \right)}{(1 + \exp \left(\sum_{i=1}^{n} w_i x_i \right))} \]

Decision rule: \[P(y = 1|x) \geq 0.5 \iff w^\top x \geq 0 \]

Gradient: differentiate the log likelihood: \[x(y - P(y = 1|x)) \]

- This is the gradient of a single example. Can then apply stochastic gradient (or related optimization methods like Adagrad, etc.)

- ML pipeline: input -> feature representation, train model on labeled data (with stochastic gradient methods), then test on new data

these sums are sparse!
This Lecture

- Sentiment analysis
- Multiclass fundamentals
- Feature extraction
- Multiclass logistic regression
Sentiment Analysis
Sentiment Analysis

- this movie was great! would watch again

- the movie was gross and overwrought, but I liked it

- this movie was not really very enjoyable

- Bag-of-words doesn’t seem sufficient (discourse structure, negation)

- There are some ways around this: extract bigram feature for “not X” for all X following the not
Sentiment Analysis

<table>
<thead>
<tr>
<th>Features</th>
<th># of features</th>
<th>frequency or presence?</th>
<th>NB</th>
<th>ME</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) unigrams</td>
<td>16165</td>
<td>freq.</td>
<td>78.7</td>
<td>N/A</td>
<td>72.8</td>
</tr>
<tr>
<td>(2) unigrams</td>
<td></td>
<td>pres.</td>
<td>81.0</td>
<td>80.4</td>
<td>82.9</td>
</tr>
<tr>
<td>(3) unigrams+bigrams</td>
<td>32330</td>
<td>pres.</td>
<td>80.6</td>
<td>80.8</td>
<td>82.7</td>
</tr>
<tr>
<td>(4) bigrams</td>
<td>16165</td>
<td>pres.</td>
<td>77.3</td>
<td>77.4</td>
<td>77.1</td>
</tr>
<tr>
<td>(5) unigrams+POS</td>
<td>16695</td>
<td>pres.</td>
<td>81.5</td>
<td>80.4</td>
<td>81.9</td>
</tr>
<tr>
<td>(6) adjectives</td>
<td>2633</td>
<td>pres.</td>
<td>77.0</td>
<td>77.7</td>
<td>75.1</td>
</tr>
<tr>
<td>(7) top 2633 unigrams</td>
<td>2633</td>
<td>pres.</td>
<td>80.3</td>
<td>81.0</td>
<td>81.4</td>
</tr>
<tr>
<td>(8) unigrams+position</td>
<td>22430</td>
<td>pres.</td>
<td>81.0</td>
<td>80.1</td>
<td>81.6</td>
</tr>
</tbody>
</table>

- Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)
Sentiment Analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>RT-s</th>
<th>MPQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNB-unii</td>
<td>77.9</td>
<td>85.3</td>
</tr>
<tr>
<td>MNB-bi</td>
<td>79.0</td>
<td>86.3</td>
</tr>
<tr>
<td>SVM-unii</td>
<td>76.2</td>
<td>86.1</td>
</tr>
<tr>
<td>SVM-bi</td>
<td>77.7</td>
<td>86.7</td>
</tr>
<tr>
<td>NBSVM-unii</td>
<td>78.1</td>
<td>85.3</td>
</tr>
<tr>
<td>NBSVM-bi</td>
<td>79.4</td>
<td>86.3</td>
</tr>
<tr>
<td>RAE</td>
<td>76.8</td>
<td>85.7</td>
</tr>
<tr>
<td>RAE-pretrain</td>
<td>77.7</td>
<td>86.4</td>
</tr>
<tr>
<td>Voting-w/Rev.</td>
<td>63.1</td>
<td>81.7</td>
</tr>
<tr>
<td>Rule</td>
<td>62.9</td>
<td>81.8</td>
</tr>
<tr>
<td>BoF-noDic.</td>
<td>75.7</td>
<td>81.8</td>
</tr>
<tr>
<td>BoF-w/Rev.</td>
<td>76.4</td>
<td>84.1</td>
</tr>
<tr>
<td>Tree-CRF</td>
<td>77.3</td>
<td>86.1</td>
</tr>
<tr>
<td>BoWSVM</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Kim (2014) CNNs</td>
<td>81.5</td>
<td>89.5</td>
</tr>
</tbody>
</table>

Before neural nets had taken off — results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB can be better for small data

Wang and Manning (2012)
Stanford Sentiment Treebank (SST) binary classification

Best systems now: large pretrained networks

90 -> 97 over the last 2 years

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Paper / Source</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLNet-Large (ensemble) (Yang et al., 2019)</td>
<td>96.8</td>
<td>XLNet: Generalized Autoregressive Pretraining for Language Understanding</td>
<td>Official</td>
</tr>
<tr>
<td>MT-DNN-ensemble (Liu et al., 2019)</td>
<td>96.5</td>
<td>Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding</td>
<td>Official</td>
</tr>
<tr>
<td>Snorkel MeTaL(ensemble) (Ratner et al., 2018)</td>
<td>96.2</td>
<td>Training Complex Models with Multi-Task Weak Supervision</td>
<td>Official</td>
</tr>
<tr>
<td>MT-DNN (Liu et al., 2019)</td>
<td>95.6</td>
<td>Multi-Task Deep Neural Networks for Natural Language Understanding</td>
<td>Official</td>
</tr>
<tr>
<td>Bidirectional Encoder Representations from Transformers (Devlin et al., 2018)</td>
<td>94.9</td>
<td>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</td>
<td>Official</td>
</tr>
<tr>
<td>Neural Semantic Encoder (Munkhdalai and Yu, 2017)</td>
<td>89.7</td>
<td>Neural Semantic Encoders</td>
<td></td>
</tr>
<tr>
<td>BLSTM-2DCNN (Zhou et al., 2017)</td>
<td>89.5</td>
<td>Text Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling</td>
<td></td>
</tr>
</tbody>
</table>

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment_analysis.md
Multiclass Fundamentals
A Cancer Conundrum: Too Many Drug Trials, Too Few Patients

Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

By GINA KOLATA

Yankees and Mets Are on Opposite Tracks This Subway Series

As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play spoiler.

By FILIP BONDY
Image Classification

- Dog
- Car

- Thousands of classes (ImageNet)
Entailment

- Three-class task over sentence pairs
- Not clear how to do this with simple bag-of-words features

A soccer game with multiple males playing.

ENTAILS

Some men are playing a sport.

A black race car starts up in front of a crowd of people.

CONTRADICTS

A man is driving down a lonely road

A smiling costumed woman is holding an umbrella.

NEUTRAL

A happy woman in a fairy costume holds an umbrella.

Bowman et al. (2015)
Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified Armstrong from his seven consecutive Tour de France wins from 1999–2005.

- 4,500,000 classes (all articles in Wikipedia)
Reading Comprehension

One day, James thought he would go into town and see what kind of trouble he could get into. He went to the grocery store and pulled all the pudding off the shelves and ate two jars. Then he walked to the fast food restaurant and ordered 15 bags of fries. He didn't pay, and instead headed home.

3) Where did James go after he went to the grocery store?
A) his deck
B) his freezer
C) a fast food restaurant
D) his room

Multiple choice questions, 4 classes (but classes change per example)

Richardson (2013)
Binary classification: one weight vector defines positive and negative classes
Can we just use binary classifiers here?
Multiclass Classification

- One-vs-all: train k classifiers, one to distinguish each class from all the rest
- How do we reconcile multiple positive predictions? Highest score?
Multiclass Classification

- Not all classes may even be separable using this approach

- Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others (with these features)
Multiclass Classification

- Binary classification: one weight vector defines both classes
- Multiclass classification: different weights and/or features per class
Multiclass Classification

- Formally: instead of two labels, we have an output space \mathcal{Y} containing a number of possible classes.
- Same machinery that we’ll use later for exponentially large output spaces, including sequences and trees.
- Decision rule: $\arg\max_{y \in \mathcal{Y}} w^\top f(x, y)$
- Multiple feature vectors, one weight vector.
- Can also have one weight vector per class: $\arg\max_{y \in \mathcal{Y}} w_y^\top f(x)$
Different Weights vs. Different Features

- Different features: $\arg\max_{y \in \mathcal{Y}} w^\top f(x, y)$
 - Suppose \mathcal{Y} is a structured label space (part-of-speech tags for each word in a sentence). $f(x, y)$ extracts features over shared parts of these.

- Different weights: $\arg\max_{y \in \mathcal{Y}} w_y^\top f(x)$
 - Generalizes to neural networks: $f(x)$ is the first $n-1$ layers of the network, then you multiply by a final linear layer at the end.

- For linear multiclass classification with discrete classes, these are identical.
Feature Extraction
Block Feature Vectors

- Decision rule: \(\arg\max_{y \in Y} w^\top f(x, y) \)

 too many drug trials, too few patients

- Base feature function:
 \[
 f(x) = I[\text{contains drug}], I[\text{contains patients}], I[\text{contains baseball}] = [1, 1, 0]
 \]

 Feature vector blocks for each label:
 \[
 f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0]
 \]
 \[
 f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0]
 \]

- Equivalent to having three weight vectors in this case

- We are NOT looking at the gold label! Instead looking at the candidate label
Making Decisions

too many drug trials, too few patients

\[f(x) = I[\text{contains drug}], I[\text{contains patients}], I[\text{contains baseball}] \]

\[f(x, y = \text{Health}) = [1, 1, 0; 0, 0, 0; 0, 0, 0] \]

\[f(x, y = \text{Sports}) = [0, 0, 0; 1, 1, 0; 0, 0, 0] \]

\[w = [+2.1, +2.3, -5, -2.1, -3.8, +5.2, +1.1, -1.7, -1.3] \]

\[w^T f(x, y) = \text{Health: } +4.4 \quad \text{Sports: } -5.9 \quad \text{Science: } -0.6 \]

\[\arg \max \]
Part-of-speech tagging as multiclass

- Classify *blocks* as one of 36 POS tags

- Example is a (sentence, index) pair \((x, i=2)\): the word *blocks* in this sentence

- Extract features with respect to this word:

 \[f(x, y=\text{VBZ}) = I[\text{curr_word}=\text{blocks} \& \text{tag} = \text{VBZ}], \]
 \[I[\text{prev_word}=\text{router} \& \text{tag} = \text{VBZ}] \]
 \[I[\text{next_word}=\text{the} \& \text{tag} = \text{VBZ}] \]
 \[I[\text{curr_suffix}=s \& \text{tag} = \text{VBZ}] \]

- Next two lectures: sequence labeling
Multiclass Logistic Regression
Multiclass Logistic Regression

\[P_w(y|x) = \frac{\exp \left(w^\top f(x, y) \right)}{\sum_{y' \in \mathcal{Y}} \exp \left(w^\top f(x, y') \right)} \]

- sum over output space to normalize
- \(\exp/\text{sum}(\exp) \): also called softmax
- Training: maximize \(\mathcal{L}(x, y) = \sum_{j=1}^{n} \log P(y_j^*|x_j) \)

\[
= \sum_{j=1}^{n} \left(w^\top f(x_j, y_j^*) - \log \sum_y \exp(w^\top f(x_j, y)) \right)
\]

- Compare to binary:

\[P(y = 1|x) = \frac{\exp(w^\top f(x))}{1 + \exp(w^\top f(x))} \]

negative class implicitly had \(f(x, y=0) = \) the zero vector
Training

- Multiclass logistic regression

 \[P_w(y|x) = \frac{\exp\left(w^\top f(x, y) \right)}{\sum_{y' \in \mathcal{Y}} \exp\left(w^\top f(x, y') \right)} \]

- Likelihood

 \[\mathcal{L}(x_j, y_j^*) = w^\top f(x_j, y_j^*) - \log \sum_{y} \exp(w^\top f(x_j, y)) \]

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \frac{\sum_{y} f_i(x_j, y) \exp(w^\top f(x_j, y))}{\sum_{y} \exp(w^\top f(x_j, y))}
\]

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \sum_{y} f_i(x_j, y) P_w(y|x_j)
\]

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \mathbb{E}_y[f_i(x_j, y)] \text{ model’s expectation of feature value}
\]

\[
\text{gold feature value}
\]
Training

\[\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y^*_j) = f_i(x_j, y^*_j) - \sum_y f_i(x_j, y) P_w(y|x_j) \]

too many drug trials, too few patients

\[f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0] \]

\[f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0] \]

\[y^* = \text{Health} \quad P_w(y|x) = [0.2, 0.5, 0.3] \]

(Made up values)

gradient:

\[[1, 1, 0, 0, 0, 0, 0, 0] \quad \text{— 0.2} \quad [1, 1, 0, 0, 0, 0, 0, 0] \quad \text{— 0.5} \quad [0, 0, 0, 1, 1, 0, 0, 0] \quad \text{— 0.3} \quad [0, 0, 0, 0, 0, 1, 1, 0] \]

\[= [0.8, 0.8, 0, -0.5, -0.5, 0, -0.3, -0.3, 0] \]

“towards gold feature value, away from what the model thinks”
Multiclass Logistic Regression: Summary

- **Model:**

 \[
 P_w(y|x) = \frac{\exp\left(w^\top f(x, y) \right)}{\sum_{y' \in \mathcal{Y}} \exp\left(w^\top f(x, y') \right)}
 \]

- **Inference:** \(\arg\max_y P_w(y|x) \)

- **Learning:** gradient ascent on the discriminative log-likelihood

 \[
 f(x, y^*) - \mathbb{E}_y[f(x, y)] = f(x, y^*) - \sum_y [P_w(y|x)f(x, y)]
 \]

 “towards gold feature value, away from expectation of feature value”
Generative vs. Discriminative Models
Learning in Probabilistic Models

- So far we have talked about discriminative classifiers (e.g., logistic regression which models $P(y|x)$)

- Cannot analytically compute optimal weights for such models, need to use gradient descent

- What about generative models?
Naive Bayes

- Data point $x = (x_1, ..., x_n)$, label $y \in \{0, 1\}$
- Formulate a probabilistic model that places a distribution $P(x, y)$
- Compute $P(y|x)$, predict $\arg\max_y P(y|x)$ to classify

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

Bayes’ Rule

- constant: irrelevant for finding the max

$$\propto P(y)P(x|y)$$

“Naive” assumption:

$$= P(y) \prod_{i=1}^{n} P(x_i|y)$$
Maximum Likelihood Estimation

- Data points \((x_j, y_j)\) provided (\(j\) indexes over examples)
- Find values of \(P(y), P(x_i | y)\) that maximize data likelihood (generative):

\[
\prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \left[\prod_{i=1}^{n} P(x_{ji} | y_j) \right]
\]

- data points (\(j\))
- features (\(i\))
- \(i\)th feature of \(j\)th example
Imagine a coin flip which is heads with probability p

Observe (H, H, H, T) and maximize likelihood:

$$\prod_{j=1}^{m} P(y_j) = p^3 (1 - p)$$

Easier: maximize \log likelihood

$$\sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log(1 - p)$$

Maximum likelihood parameters for binomial/multinomial = read counts off of the data + normalize
Maximum Likelihood Estimation

- Data points \((x_j, y_j)\) provided \((j\) indexes over examples)

- Find values of \(P(y), P(x_i|y)\) that maximize data likelihood (generative):

\[
\prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \prod_{i=1}^{n} P(x_{ji}|y_j)
\]

- Equivalent to maximizing log of data likelihood:

\[
\sum_{j=1}^{m} \log P(y_j, x_j) = \sum_{j=1}^{m} \left[\log P(y_j) + \sum_{i=1}^{n} \log P(x_{ji}|y_j) \right]
\]

- Can do this by counting and normalizing distributions!
Next time: HMMs / POS tagging

- Locally-normalized generative models, so easy to estimate from data
- First thing we have that we could plausibly sample real sentences from

In 2 lectures: CRFs (NER)

You’ve now seen everything you need to implement multi-class classification models