CS388: Natural Language Processing

Lecture 5: Named Entity Recognition, CRFs

Greg Durrett

Administrivia

Mini 1 grading underway

Project 1 due next Thursday

Recall: HMMs

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

$$\rightarrow \underbrace{y_n} \qquad P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^n P(y_i | y_{i-1}) \prod_{i=1}^n P(x_i | y_i)$$

- Training: maximum likelihood estimation (count + normalize)
- Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y},\mathbf{x})}{P(\mathbf{x})}$
- ▶ Viterbi: $score_i(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_i|s) score_{i-1}(y_{i-1})$

Recall: Viterbi Algorithm

Compute scores for next timestep (score of optimal tag sequence ending with tag *i* at timestep *t*)

Viterbi/HMMs: Other Resources

- Lecture notes from my undergrad course (posted online)
 - We ignore the STOP token here. It's not in the tag set and just don't use these probabilities
- ▶ Eisenstein Chapter 7.3 **but** the notation covers a more general case than what's discussed for HMMs

Jurafsky+Martin 8.4.5

This Lecture

Conditional random fields

Features for NER

Inference and Learning in CRFs

Next time: finish up NER systems

Named Entity Recognition

- ▶ BIO tagset: begin, inside, outside
- ▶ Sequence of tags should we use an HMM?
- Why might an HMM not do so well here?
 - Lots of O's
 - Insufficient features/capacity with multinomials (especially for unks)

HMMs Pros and Cons

Big advantage: transitions, scoring pairs of adjacent y's

- Big downside: not able to incorporate useful word context information
- Solution: switch from generative to discriminative model (conditional random fields) so we can condition on the *entire input*.
- ▶ Conditional random fields: logistic regression + features on pairs of y's

Conditional Random Fields

Conditional Random Fields

▶ Flexible discriminative model for tagging tasks that can use arbitrary features of the input. Similar to logistic regression, but *structured*

```
Barack Obama will travel to Hangzhou today for the G20 meeting.
Curr word=Barack & Label=B-PER
Next word=Obama & Label=B-PER
Curr_word_starts_with_capital=True & Label=B-PER
Posn in sentence=1st & Label=B-PER
Label=B-PER & Next-Label = I-PER
```

I-PER

B-PER

Tagging with Logistic Regression

Logistic regression over each tag individually: "different features" approach to

$$P(y_i = y | \mathbf{x}, i) = \frac{\exp(\mathbf{w}^{\top} \mathbf{f}(y, i, \mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}^{\top} \mathbf{f}(y', i, \mathbf{x}))}$$
 features for a single tag

Probability of the *i*th word getting assigned tag *y* (B-PER, etc.)

Tagging with Logistic Regression

Logistic regression over each tag individually: "different features" approach to

$$P(y_i = y | \mathbf{x}, i) = \frac{\exp(\mathbf{w}^{\top} \mathbf{f}(y, i, \mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}^{\top} \mathbf{f}(y', i, \mathbf{x}))}$$
 features for a single tag

Over all tags:

$$P(\mathbf{y} = \tilde{\mathbf{y}}|\mathbf{x}) = \prod_{i=1}^{n} P(y_i = \tilde{y}_i|\mathbf{x}, i) = \frac{1}{Z} \exp\left(\sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}(\tilde{y}_i, i, \mathbf{x})\right)$$

- Score of a prediction: sum of weights dot features over each individual predicted tag (this is a simple CRF but not the general form)
- ▶ Set Z equal to the product of denominators; we'll discuss this in a few slides
- Conditional model: x is observed, y isn't

Example: "Emission Features" fe

B-PER I-PER O O
Barack Obama will travel

feats =
$$f_e(B-PER, i=1, x) + f_e(I-PER, i=2, x) + f_e(O, i=3, x) + f_e(O, i=4, x)$$

[CurrWord=Obama & label=I-PER, PrevWord=Barack & label=I-PER, CurrWordIsCapitalized & label=I-PER, ...]

B-PER B-PER O O

Barack Obama will travel

feats = $f_e(B-PER, i=1, x) + f_e(B-PER, i=2, x) + f_e(O, i=3, x) + f_e(O, i=4, x)$

Adding Structure

$$P(\mathbf{y} = \tilde{\mathbf{y}} | \mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}(\tilde{y}_i, i, \mathbf{x}) \right)$$

▶ We want to be able to learn that some tags don't follow other tags — want to have features on tag pairs

$$P(\mathbf{y} = \tilde{\mathbf{y}}|\mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}_{e}(\tilde{y}_{i}, i, \mathbf{x}) + \sum_{i=2}^{n} \mathbf{w}^{\top} \mathbf{f}_{t}(\tilde{y}_{i-1}, \tilde{y}_{i}, i, \mathbf{x}) \right)$$

- ▶ Score: sum of weights dot f_e features over each predicted tag ("emissions") plus sum of weights dot f_t features over tag pairs ("transitions")
- ▶ This is a sequential CRF

Example

B-PER I-PER O O
Barack Obama will travel

feats =
$$\mathbf{f}_{e}(B-PER, i=1, \mathbf{x}) + \mathbf{f}_{e}(I-PER, i=2, \mathbf{x}) + \mathbf{f}_{e}(O, i=3, \mathbf{x}) + \mathbf{f}_{e}(O, i=4, \mathbf{x}) + \mathbf{f}_{t}(B-PER, I-PER, i=1, \mathbf{x}) + \mathbf{f}_{t}(I-PER, O, i=2, \mathbf{x}) + \mathbf{f}_{t}(O, O, i=3, \mathbf{x})$$

B-PER B-PER O O

Barack Obama will travel

feats =
$$\mathbf{f}_{e}(B-PER, i=1, \mathbf{x}) + \mathbf{f}_{e}(B-PER, i=2, \mathbf{x}) + \mathbf{f}_{e}(O, i=3, \mathbf{x}) + \mathbf{f}_{e}(O, i=4, \mathbf{x}) + \mathbf{f}_{t}(B-PER, B-PER, i=1, \mathbf{x}) + \mathbf{f}_{t}(B-PER, O, i=2, \mathbf{x}) + \mathbf{f}_{t}(O, O, i=3, \mathbf{x})$$

▶ Obama can start a new named entity (emission feats look okay), but we're not likely to have two PER entities in a row (transition feats)

Sequential CRFs

$$P(\mathbf{y} = \tilde{\mathbf{y}}|\mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}_{e}(\tilde{y}_{i}, i, \mathbf{x}) + \sum_{i=2}^{n} \mathbf{w}^{\top} \mathbf{f}_{t}(\tilde{y}_{i-1}, \tilde{y}_{i}, i, \mathbf{x}) \right)$$

- Critical property: this structure is going to allow us to use dynamic programming (Viterbi) to sum or max over all sequences
- ▶ How does this compare to HMMs?

HMMs vs. CRFs

HMM

$$P(\mathbf{y}, \mathbf{x}) = P(y_1)P(x_1|y_1)P(y_2|y_1)P(x_2|y_2)\dots$$

= $P(y_1)\prod_{i=2}^{n} P(y_i|y_{i-1})\prod_{i=1}^{n} P(x_i|y_i)$

- Both models are expressible in different factor graph notation
- Phis are "potentials", used in the general CRF formulation

HMMs vs. CRFs

▶ HMMs: in the standard HMM, emissions consider one word at a time

▶ CRFs support features over many words simultaneously, non-independent features (e.g., suffixes and prefixes), not generative models

Naive Bayes: logistic regression:: HMMs: CRFs local vs. global normalization <-> generative vs. discriminative (locally normalized discriminative models do exist (MEMMs))

CRFs in General

▶ CRFs: discriminative model with the following form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_k \exp(\phi_k(\mathbf{x},\mathbf{y}))$$
 any real-valued scoring function of its arguments

• Our special case: linear feature-based potentials $\phi_k(\mathbf{x},\mathbf{y}) = w^{\top} f_k(\mathbf{x},\mathbf{y})$

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{k=1}^{n} w^{\top} f_k(\mathbf{x}, \mathbf{y})\right)$$

 Problem: intractable inference in the general case! Computing Z requires an exponent sum

Features for NER

Basic Features for NER

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

O B-LOC

Barack Obama will travel to Hangzhou today for the G20 meeting.

Transitions: $f_t(y_{i-1}, y_i) = Ind[y_{i-1} - y_i] = Ind[O - B-LOC]$

Emissions: $f_e(y_6, 6, \mathbf{x}) = \text{Ind[B-LOC & Current word = Hangzhou]}$ Ind[B-LOC & Prev word = to]

Emission Features for NER

LOC

 $\phi_e(y_i,i,\mathbf{x})$

Leicestershire is a nice place to visit...

PER

Leonardo DiCaprio won an award...

LOC

I took a vacation to Boston

ORG

Apple released a new version...

LOC

PER

Texas governor Greg Abbott said

ORG

According to the New York Times...

Emission Features for NER

- Word features (can use in HMM)
 - Capitalization
 - Word shape
 - Prefixes/suffixes
 - Lexical indicators
- Context features (can't use in HMM!)
 - Words before/after
 - Tags before/after
- Word clusters
- Gazetteers

Leicestershire

Boston

Apple released a new version...

According to the New York Times...

CRFs Outline

▶ Model:
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Inference
- Learning

Inference and Learning in CRFs

Computing (arg)maxes

lack $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})$: can use Viterbi exactly as in HMM case

$$\max_{y_1,...,y_n} e^{\phi_t(y_{n-1},y_n)} e^{\phi_e(y_n,n,\mathbf{x})} \cdots e^{\phi_e(y_2,2,\mathbf{x})} e^{\phi_t(y_1,y_2)} e^{\phi_e(y_1,1,\mathbf{x})}$$

 $ightharpoonup \exp(\phi_t(y_{i-1},y_i))$ and $\exp(\phi_e(y_i,i,\mathbf{x}))$ play the role of the Ps now, use the exact same Viterbi dynamic program

Inference in General CRFs

Can do efficient inference in any treestructured CRF

 Max-product algorithm: generalization of Viterbi to arbitrary treestructured graphs (sum-product is generalization of forward-backward)

CRFs Outline

▶ Model:
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Inference: argmax P(y | x) from Viterbi
- Learning

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Logistic regression: $P(y|x) \propto \exp w^{\top} f(x,y)$
- For CRFs: maximize $\mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \log P(\mathbf{y}^* | \mathbf{x})$
- ▶ Gradient is analogous to logistic regression: gold feats expected feats

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=2}^n f_t(y_{i-1}^*, y_i^*) + \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x})$$

$$\text{intractable!} \int_{i=2}^n f_t(y_{i-1}, y_i) + \sum_{i=1}^n f_e(y_i, i, \mathbf{x})$$

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=2}^n f_t(y_{i-1}^*, y_i^*) + \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x})$$
$$-\mathbb{E}_{\mathbf{y}} \left[\sum_{i=2}^n f_t(y_{i-1}, y_i) + \sum_{i=1}^n f_e(y_i, i, \mathbf{x}) \right]$$

Let's focus on emission feature expectation

$$\mathbb{E}_{\mathbf{y}}\left[\sum_{i=1}^{n} f_e(y_i, i, \mathbf{x})\right] = \sum_{\mathbf{y} \in \mathcal{Y}} P(\mathbf{y} | \mathbf{x}) \left[\sum_{i=1}^{n} f_e(y_i, i, \mathbf{x})\right] = \sum_{i=1}^{n} \sum_{\mathbf{y} \in \mathcal{Y}} P(\mathbf{y} | \mathbf{x}) f_e(y_i, i, \mathbf{x})$$

$$= \sum_{i=1}^{n} \sum_{s} P(y_i = s | \mathbf{x}) f_e(s, i, \mathbf{x})$$

marginal probability

sum over timesteps $\sum_{i=1}^n \sum_s P(y_i = s | \mathbf{x}) f_e(s, i, \mathbf{x})$ feats of that tag sum over tags at that step

• How do we compute these marginals $P(y_i = s | \mathbf{x})$?

$$P(y_i = s | \mathbf{x}) = \sum_{y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n} P(\mathbf{y} | \mathbf{x})$$

 $lackbox{What did Viter bi compute?} \ P(\mathbf{y}_{\max}|\mathbf{x}) = \max_{y_1,...,y_n} P(\mathbf{y}|\mathbf{x})$

Can compute marginals with dynamic programming as well using forward-backward

$$P(y_3 = 2|\mathbf{x}) =$$

sum of all paths through state 2 at time 3 sum of all paths

$$P(y_3 = 2|\mathbf{x}) =$$

sum of all paths through state 2 at time 3 sum of all paths

Easiest and most flexible to do one pass to compute and one to compute

Initial:

$$\alpha_1(s) = \exp(\phi_e(s, 1, \mathbf{x}))$$

Recurrence:

$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \exp(\phi_e(s_t, t, \mathbf{x}))$$

$$\exp(\phi_t(s_{t-1}, s_t))$$

- Same as Viterbi but summing instead of maxing!
- These quantities get very small!
 Store everything as log probabilities

Initial:

$$\beta_n(s) = 1$$

Recurrence:

$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \exp(\phi_e(s_{t+1}, t+1, \mathbf{x}))$$
$$\exp(\phi_t(s_t, s_{t+1}))$$

Big differences: count emission for the *next* timestep (not current one)

$$\alpha_1(s) = \exp(\phi_e(s, 1, \mathbf{x}))$$

$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \exp(\phi_e(s_t, t, \mathbf{x}))$$

$$\exp(\phi_t(s_{t-1}, s_t))$$

$$\beta_n(s) = 1$$

$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \exp(\phi_e(s_{t+1}, t+1, \mathbf{x}))$$

$$\exp(\phi_t(s_t, s_{t+1}))$$

$$P(s_3 = 2|\mathbf{x}) = \frac{\alpha_3(2)\beta_3(2)}{\sum_i \alpha_3(i)\beta_3(i)}$$

- Does this explain why beta is what it is?
- What does the denominator here mean?

Computing Marginals

- Normalizing constant $Z = \sum_{\mathbf{y}} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$
- Analogous to P(x) for HMMs
- For both HMMs and CRFs:

$$P(y_i = s | \mathbf{x}) = \frac{\text{forward}_i(s) \text{backward}_i(s)}{\sum_{s'} \text{forward}_i(s') \text{backward}_i(s')}$$

Z for CRFs, P(x) for HMMs

Posteriors vs. Probabilities

$$P(y_i = s | \mathbf{x}) = \frac{\text{forward}_i(s) \text{backward}_i(s)}{\sum_{s'} \text{forward}_i(s') \text{backward}_i(s')}$$

▶ Posterior is *derived* from the parameters and the data (conditioned on x!)

$$P(x_i|y_i), P(y_i|y_{i-1})$$

 $P(y_i|\mathbf{x}), P(y_{i-1}, y_i|\mathbf{x})$

HMM

Model parameter (usually multinomial distribution)

Inferred quantity from forward-backward

CRF

Undefined (model is by definition conditioned on **x**)

Inferred quantity from forward-backward

For emission features:

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x}) - \sum_{i=1}^n \sum_s P(y_i = s | \mathbf{x}) f_e(s, i, \mathbf{x})$$

gold features — expected features under model

- Transition features: need to compute $P(y_i=s_1,y_{i+1}=s_2|\mathbf{x})$ using forward-backward as well
- ...but you can build a pretty good system without learned transition features (use heuristic weights, or just enforce constraints like B-PER -> I-ORG is illegal)

CRFs Outline

▶ Model:
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Inference: argmax P(y|x) from Viterbi
- Learning: run forward-backward to compute posterior probabilities; then

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x}) - \sum_{i=1}^n \sum_s P(y_i = s | \mathbf{x}) f_e(s, i, \mathbf{x})$$

Pseudocode and Tips

Pseudocode

for each epoch

for each example

extract features on each emission and transition (look up in cache) compute potentials phi based on features + weights compute marginal probabilities with forward-backward accumulate gradient over all emissions and transitions

Implementation Tips for CRFs

- Caching is your friend! Cache feature vectors especially
- Try to reduce redundant computation, e.g. if you compute both the gradient and the objective value, don't rerun the dynamic program
- Exploit sparsity in feature vectors where possible, especially in feature vectors and gradients
- Do all dynamic program computation in log space to avoid underflow
- If things are too slow, run a profiler and see where time is being spent. Forward-backward should take most of the time

Debugging Tips for CRFs

- Hard to know whether inference, learning, or the model is broken!
- ▶ Compute the objective is optimization working?
 - ▶ Inference: check gradient computation (most likely place for bugs)
 - Is $\sum \text{forward}_i(s) \text{backward}_i(s)$ the same for all i?
 - Do probabilities normalize correctly + look "reasonable"? (Nearly uniform when untrained, then slowly converging to the right thing)
 - ▶ **Learning**: is the objective going down? Try to fit 1 example / 10 examples. Are you applying the gradient correctly?
- If objective is going down but model performance is bad:
 - ▶ Inference: check performance if you decode the training set

Next Time

Finish discussing NER

Neural networks