CS388: Natural Language Processing

Lecture 6: Neural

Networks
Greg Durrett | H@
@ TEXAS " P 28 B e comu o

‘The Uni

Administrivia

» Mini 1 graded by next week

» Project 1 due in a week

Recall: Sequential CRFs

» Model: P(y|x) ocexpw ' [th Yi—1,Yi +Zfe Yiy i, X)

©8@acQ

» Inference: argmax P(y|x) from Viterbi

» Emission features capture word-level
info, transitions enforce tag consistency

» Learning: run forward-backward to compute posterior probabilities; then

ZZP i = 8|x) fe(s,i,x)

aaﬁy x) ny

Recall: NER Feats Example

B-PER I-PER O O
Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(I-PER, i=2, x) + f-(O, i=3, x) + fe(O, i=4, x)
+f(B-PER, I-PER, i=1, x) + fi(I-PER, O, i=2, x) + f(0, O, i=3, x)

B-PER B-PER O O

Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(B-PER, i=2, x) + f¢(O, i=3, x) + fe(O, i=4, x)
+ fi(B-PER, B-PER, i=1, x) + f(B-PER, O, i=2, x) + f(O, O, i=3, x)

» Obama can start a new named entity (emission feats look okay), but
we’re not likely to have two PER entities in a row (transition feats)

Recall: Forward-Backward Algorithm

P(ys = 2|x) =

sum of all paths through state 2 at time 3

sum of all paths

LY 3

byt

Recall: Forward-Backward Algorithm

P(ys = 2|x) =

sum of all paths through state 2 at time 3

) sum of all paths

i=4)

» Easiest and most flexible to do one
pass to compute and one to

compute

slide credit: Dan Klein

Recall: Implementation Tips for CRFs

» Caching is your friend! Cache feature vectors especially
» Do all dynamic program computation in log space to avoid underflow

» For transitions: there are various hardcoding schemes you can explore.
Use log probabilities from HMM, use 0 or -infinity based on whether
the transition is legal or not, ...

4

4

4

This Lecture
Finish discussion of NER
Neural network history
Neural network basics
Feedforward neural networks + backpropagation
Applications

Implementing neural networks (if time)

NER

Evaluating NER

B-PER I-PER O O O B-LOC O O OBORG O O
Barack Obama will travel to Hangzhou today for the/G20 meeting .
PERSON LOC ORG
» Prediction of all Os still gets 66% accuracy on this example!

» What we really want to know: how many named entity chunk
predictions did we get right?
» Precision: of the ones we predicted, how many are right?

» Recall: of the gold named entities, how many did we find?

» F-measure: harmonic mean of these two

NER

» CRF with lexical features can get around 85 F1 on CoNLL 2003: 4
classes (PER, ORG, LOC, MISC), newswire data

» Other pieces of information that many systems capture

» World knowledge:

The delegation met the president at the airport,Tanjug said.

/

Tanjug (/'tanjug/) (Serbian Cyrillic: TaHjyr) is a Serbian state news agency based in Be\grade.m

Tanjug

From Wikipedia, the free encyclopedia

Nonlocal Features

The news agency Tanjug reported on the outcome of the meeting.
ORG?
PER?

>

The delegation met the president at the airport, Tanjug said.

» More complex factor graph structures can let you capture this, or just
decode sentences in order and use features on previous sentences

Finkel and Manning (2008), Ratinov and Roth (2009)

: How well do NER systems do?

\ | System
+ | LBJ-NER

| Resources Used | Fy ‘
Wikipedia, Nonlocal Fea- | 90.80

Lample et al. (2016)

tures, Word-class Model LSTM-CRF (no chan)

- | (Suzuki and | Semi-supervised on 1G- | 89.92 LSTM-CRF
Isozaki, 2008) word unlabeled data S-LSTM (no char)
- | (Ando and | Semi-supervised on 27M- | 89.31 S-LSTM
Zhang, 2005) word unlabeled data
- | (Kazama and | Wikipedia 88.02
Torisawa, 2007a) BiLSTM-CRF + ELMo
- | (Krishnan and | Non-local Features 87.24 Peters et al. (2018)
Manning, 2006)
- | (Kazama and | Non-local Features 87.17

BERT

Torisawa, 2007b K
) 36.86 Devlin et al. (2019)

+ | (Finkel et al., | Non-local Features
2005)

Ratinov and Roth (2009)

90.20
90.94
87.96
90.33

92.2

92.8

: Modern Entity Typing

a) Our Dataset

b) OntoNotes ¢) FIGER
» More and more classes (17 -> 112 -> 10,000+)

Choi et al. (2018)

Neural Net History

History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

©1: foat C3: f. maps 16@10x10
oaro maps it maps 16@565
eur Satess os 15

$2: 1. maps
6@14x14

| Full connection Gaussian connections
Convoluti i Convoluti i Full connection

net, . gy“s:‘;‘%wy: o
= |[0-9>0-0—y
w. " @ - @ we,
wo AN, AR

I

» LSTMs: Hochreiter and Schmidhuber (1997)

» Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

Tnput Window

» Collobert and Weston 2011: “NLP (almost) from scratch”

» Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

» Basically tied SOTA in 2011, but with lots of 20d oy
computation (two weeks of training embeddings) S

» Socher 2011-2014: tree-structured RNNs working okay

» Krizhevskey et al. (2012): AlexNet for vision N orglbo)

(1)) @ (1))
. not very good..
a b c

2014: Stuff starts working

» Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets)

» Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs)

» Chen and Manning transition-based dependency parser (based on
feedforward networks)

» What made these work? Data, optimization (initialization, adaptive
optimizers), representation (good word embeddings)

Neural Net Basics

Neural Networks
» Linear classification: argmaxwaf(:E, Y)

» Want to learn intermediate conjunctive features of the input

the movie was not all that good

I[contains not & contains good]

» How do we learn this if our feature vector is just the unigram indicators?

I[contains not], I[contains good]

Neural Networks: XOR

» Let’s see how we can use neural nets

to learn a simple nonlinear function L2
» Inputs 1, X2 1
(generally x = (z1,...,2p)) 0
» Output y !
(generally y = (y1,...,9n)) 1

= = OO

Neural Networks: XOR

0i)) Y = a1x1 + a2 X

Yy = a121 + asws + ag tanh(zy + x2) V

“ ”

or

0 {1 T (looks like action
+ . potential in neuron)
1 T2 x1 XOR 24 |/
0 0 0
0 1 1 2 - 1 2
1 0 1 /I
1 1 0 4

Neural Networks: XOR

X2 Y = a1T1 + a2

Yy = a121 + asTa + agz tanh(zy + x2) ~/

y = —x1 — o + 2tanh(zy + x2)
“or”

I0 1 T
r1 22 x1 XOR 29
0 O 0
0 1 1
1 0 1
1 1 0

X

Neural Networks

Linear model: Yy = W - X + b

y=g(w-x+1)
y = g(Wx +b)

[N0\

Nonlinear ~ Warp shift
transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

...possible because
Linear classifier Neural network we transformed the
space!

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

y=g(Wz+b)
z=¢g(Vy +c !
9(Vy +c¢) 1
z=g(Vg(Wx +b) +c)
— o |
output of first layer (
\\ ,_,/

Check: what happens if no nonlinearity? ‘
More powerful than basic linear models?

z=V(Wx+Db)+c

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropagation

Logistic Regression with NNs

T H ope
P(y|x) = exp(w_f(*,y)) » Single scalar probability

> exp(w’ f(x,y))
» Compute scores for all possible
P(y|x) = softmax ([w' f(x,y)],cy) labelsat once (returns vector)

softmax(p); = exp(pi) » softmax: exps and normalizes a
> exp(pir) given vector
P(y|x) = softmax(W f(x)) » Weight vector per class;

W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) » Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

d hidden units

g
L1 dxnmatrix nonlinearity num_classes x d
n features (tanh, relu, ...) matrix

num_classes
probs

B v HL Faq W feema

Training Neural Networks

P(y|x) = softmax(Wz) z=g(Vf(x))

» Maximize log likelihood of training data

L(x,i") =log P(y = i"|x) = log (softmax(Wz) - ;)
» i*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,i*) =Wz e — logz exp(Wz) - e;
J

Computing Gradients

L(x,i") =Wz e — logZexp(Wz) -

j

J
» Gradient with respect to W w
9 z; — Ply =i|x)z; ifj=i* i
L(x,i*) =4 ’
OWi; —P(y =1i|x)z; otherwise

z; — P(y = i]x)z;

—P(y = ilx)z,

» Looks like logistic regression with z as the features!

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

w

B v e W Heme
oc

H ZW

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

B v HeE
g

— err(z)
AN

» Can forget everything after z, treat
it as the output and keep backpropping

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

» Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

» Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs ()
?? —
1 3
Fed raises interest rates in order to ... previous word || §
» Word embeddings for each word form input %
3
» ~1000 features here — smaller feature vector curr word §
than in sparse models, but every feature fires on L& |
every example 3
next word| §
» Weight matrix learns position-dependent -
processing of the words other words, feats, etc. L=

Botha et al. (2017)

NLP with Feedforward Networks

» Hidden layer mixes these
different signals and learns
feature conjunctions

I(©000)[0000)[C000)0000)! Ao
ARSI R A= A

@ @ @ @

qu

no que
ue ueu
eu
ue
begmms at Ezrigram:
no gueue at

Botha et al. (2017)

NLP with Feedforward Networks

» Multilingual tagging results:

Model | Ace. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k - 6.63m
Small FF 9476 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.31m
% Dim. 95.39 143k 0.7 0.18m

» Gillick used LSTMs; this is smaller, faster, and better

Botha et al. (2017)

Sentiment Analysis

» Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax
hy = f(Wa - hy + bo)
hi = f(W1-av+by)
4
w=3 %
i=1
LTI T P P I g
Predator is a masterpiece
a C2 ¢ ¢ lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
fine bin (s)
DAN-ROOT — 469 857 — 31
DAN-RAND 773 454 832 888 136
[DAN 80.3 477 863 89.4 136 | lyyer et al. (2015)
NBOW-RAND 762 423 814 889 91
¢ d NBOW 790 436 836 89.0 91
Bag-of-words BiNB — 419 8.1 — — Wang and
[NBSVM-bi 794 — — 912 —] .
- Manning (2012)
RecNN 777 432 824 —
RecNTN* — 457 854 — —
DRecNN — 498 866 — 431
Tree RNNs / TreeLSTM — 506 869 — —
CNNS / LSTMS DCNN* — 485 869 894 —
PVEC* — 487 878 926

[cNN-MC 81.1 474 88.1 —
WRRBM* — — — 89.2

3452] Kim (2014)

Implementation Details

Computation Graphs

» Computing gradients is hard! Computation graph abstraction allows us to
define a computation symbolically and will do this for us

» Automatic differentiation: keep track of derivatives / be able to
backpropagate through each function:

y=x*x =—¥» (y,dy) = (x * x, 2 * x * dx)
codegen

» Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

» Define forward pass for P(y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):

def

def

__init_ (self, inp, hid, out):
super (FFNN, self). init ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()

self.W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)

forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))

Computation Graphs in Pytorch
ei*: one-hot vector
P(y|x) = softmax(Wg(V f(X))) of the label
(e.g., [0, 1, 0])
ffnn = FFNN() //
def make update(input, gold label):
ffnn.zero grad() # clear gradient variables
probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)
loss.backward()
optimizer.step()

Training a Model

Define a computation graph
For each epoch:
For each batch of data:
Compute loss on batch
Autograd to compute gradients
Take step with optimizer

Decode test set

» Training neural networks

Next Time

» Word representations / word vectors

» word2vec, GloVe

