
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	6:	Neural	
Networks

Administrivia

‣ Mini	1	graded	by	next	week

‣ Project	1	due	in	a	week

Recall:	SequenHal	CRFs

‣ Model:

‣ Inference:	argmax	P(y|x)	from	Viterbi

‣ Learning:	run	forward-backward	to	compute	posterior	probabiliHes;	then

P (y|x) / expw>

"
nX

i=2

ft(yi�1, yi) +
nX

i=1

fe(yi, i,x)

#

@

@w
L(y⇤,x) =

nX

i=1

fe(y
⇤
i , i,x)�

nX

i=1

X

s

P (yi = s|x)fe(s, i,x)

y1 y2 yn…

�t

�e

‣ Emission	features	capture	word-level	
info,	transiHons	enforce	tag	consistency

Recall:	NER	Feats	Example

Barack	Obama	will	travel
B-PER					I-PER					O					O											

Barack	Obama	will	travel
B-PER					B-PER				O					O											

feats	=	fe(B-PER,	i=1,	x)	+	fe(I-PER,	i=2,	x)	+	fe(O,	i=3,	x)	+	fe(O,	i=4,	x)		
													+	ft(B-PER,	I-PER,	i=1,	x)	+	ft(I-PER,	O,	i=2,	x)	+	ft(O,	O,	i=3,	x)

feats	=	fe(B-PER,	i=1,	x)	+	fe(B-PER,	i=2,	x)	+	fe(O,	i=3,	x)	+	fe(O,	i=4,	x)		
													+	ft(B-PER,	B-PER,	i=1,	x)	+	ft(B-PER,	O,	i=2,	x)	+	ft(O,	O,	i=3,	x)

‣ Obama	can	start	a	new	named	enHty	(emission	feats	look	okay),	but	
we’re	not	likely	to	have	two	PER	enHHes	in	a	row	(transiHon	feats)

Recall:	Forward-Backward	Algorithm

P (y3 = 2|x) =
sum of all paths through state 2 at time 3

sum of all paths

slide	credit:	Dan	Klein

P (y3 = 2|x) =
sum of all paths through state 2 at time 3

sum of all paths

=

‣ Easiest	and	most	flexible	to	do	one	
pass	to	compute								and	one	to	
compute	

Recall:	Forward-Backward	Algorithm

Recall:	ImplementaHon	Tips	for	CRFs
‣ Caching	is	your	friend!	Cache	feature	vectors	especially

‣ Do	all	dynamic	program	computaHon	in	log	space	to	avoid	underflow

‣ For	transiHons:	there	are	various	hardcoding	schemes	you	can	explore.	
Use	log	probabiliHes	from	HMM,	use	0	or	-infinity	based	on	whether	
the	transiHon	is	legal	or	not,	…

This	Lecture

‣ Feedforward	neural	networks	+	backpropagaHon

‣ Neural	network	basics

‣ ApplicaHons

‣ Neural	network	history

‣ ImplemenHng	neural	networks	(if	Hme)

‣ Finish	discussion	of	NER

NER

EvaluaHng	NER

‣ PredicHon	of	all	Os	sHll	gets	66%	accuracy	on	this	example!

Barack	Obama	will	travel	to	Hangzhou	today	for	the	G20	mee=ng	.

PERSON LOC ORG

B-PER I-PER O O O B-LOC B-ORGO O O O O

‣ What	we	really	want	to	know:	how	many	named	enHty	chunk	
predicHons	did	we	get	right?

‣ Precision:	of	the	ones	we	predicted,	how	many	are	right?

‣ Recall:	of	the	gold	named	enHHes,	how	many	did	we	find?

‣ F-measure:	harmonic	mean	of	these	two

NER

‣ CRF	with	lexical	features	can	get	around	85	F1	on	CoNLL	2003:	4	
classes	(PER,	ORG,	LOC,	MISC),	newswire	data

‣Other	pieces	of	informaHon	that	many	systems	capture

‣World	knowledge:

The	delegaHon	met	the	president	at	the	airport,	Tanjug	said.

ORG?
PER?

Nonlocal	Features

The	delegaHon	met	the	president	at	the	airport,	Tanjug	said.

The	news	agency	Tanjug	reported	on	the	outcome	of	the	meeHng.

‣More	complex	factor	graph	structures	can	let	you	capture	this,	or	just	
decode	sentences	in	order	and	use	features	on	previous	sentences

Finkel	and	Manning	(2008),	RaHnov	and	Roth	(2009)

How	well	do	NER	systems	do?

RaHnov	and	Roth	(2009)

Lample	et	al.	(2016)

BiLSTM-CRF	+	ELMo	
Peters	et	al.	(2018)

92.2

BERT	
Devlin	et	al.	(2019)

92.8

Modern	EnHty	Typing

Choi	et	al.	(2018)

‣ More	and	more	classes	(17	->	112	->	10,000+)

Neural	Net	History

History:	NN	“dark	ages”

‣ Convnets:	applied	to	MNIST	by	LeCun	in	1998

‣ LSTMs:	Hochreiter	and	Schmidhuber	(1997)

‣ Henderson	(2003):	neural	ship-reduce	parser,	not	SOTA

2008-2013:	A	glimmer	of	light…

‣ Collobert	and	Weston	2011:	“NLP	(almost)	from	scratch”

‣ Feedforward	neural	nets	induce	features	for	
sequenHal	CRFs	(“neural	CRF”)

‣ Basically	Hed	SOTA	in	2011,	but	with	lots	of	
computaHon	(two	weeks	of	training	embeddings)

‣ Socher	2011-2014:	tree-structured	RNNs	working	okay

‣ Krizhevskey	et	al.	(2012):	AlexNet	for	vision

2014:	Stuff	starts	working

‣ Sutskever	et	al.	+	Bahdanau	et	al.:	seq2seq	for	neural	MT	(LSTMs)

‣ Kim	(2014)	+	Kalchbrenner	et	al.	(2014):	sentence	classificaHon	/	senHment	
(convnets)

‣ Chen	and	Manning	transiHon-based	dependency	parser	(based	on	
feedforward	networks)

‣ What	made	these	work?	Data,	op-miza-on	(iniHalizaHon,	adapHve	
opHmizers),	representa-on	(good	word	embeddings)

Neural	Net	Basics

Neural	Networks

‣ Want	to	learn	intermediate	conjuncHve	features	of	the	input

argmaxyw
>f(x, y)‣ Linear	classificaHon:

the	movie	was	not	all	that	good

I[contains	not	&	contains	good]

‣ How	do	we	learn	this	if	our	feature	vector	is	just	the	unigram	indicators?

I[contains	not],	I[contains	good]

Neural	Networks:	XOR

x1

x2

x1 x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s	see	how	we	can	use	neural	nets	
to	learn	a	simple	nonlinear	funcHon

‣ Inputs

‣ Output

Neural	Networks:	XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action
potential in neuron)

Neural	Networks:	XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural	Networks

Taken	from	h8p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp
space

ShiftNonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural	Networks

Taken	from	h8p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear	classifier Neural	network
…possible	because	
we	transformed	the	
space!

Deep	Neural	Networks

Taken	from	h8p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

}

output	of	first	layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

z = V(Wx+ b) + c

Check:	what	happens	if	no	nonlinearity?	
More	powerful	than	basic	linear	models?

Feedforward	Networks,	
BackpropagaHon

LogisHc	Regression	with	NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single	scalar	probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute	scores	for	all	possible	
labels	at	once	(returns	vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ sopmax:	exps	and	normalizes	a	
given	vector

P (y|x) = softmax(Wf(x)) ‣Weight	vector	per	class;	
W	is	[num	classes	x	num	feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now	one	hidden	layer

Neural	Networks	for	ClassificaHon

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

sopmaxWf
(x
)

z

nonlinearity	
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	

probs

Training	Neural	Networks

‣Maximize	log	likelihood	of	training	data

‣ i*:	index	of	the	gold	label

‣ ei:	1	in	the	ith	row,	zero	elsewhere.	Dot	by	this	=	select	ith	index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

CompuHng	Gradients

‣ Gradient	with	respect	to	W

if	i	=	i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks	like	logisHc	regression	with	z	as	the	features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W

Neural	Networks	for	ClassificaHon

V sopmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

BackpropagaHon:	Picture

V sopmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can	forget	everything	aper	z,	treat	
it	as	the	output	and	keep	backpropping

BackpropagaHon:	Takeaways

‣ Gradients	of	output	weights	W	are	easy	to	compute	—	looks	like	
logisHc	regression	with	hidden	layer	z	as	feature	vector

‣ Can	compute	derivaHve	of	loss	with	respect	to	z	to	form	an	“error	
signal”	for	backpropagaHon

‣ Easy	to	update	parameters	based	on	“error	signal”	from	next	layer,	
keep	pushing	error	signal	back	as	backpropagaHon

‣ Need	to	remember	the	values	from	the	forward	computaHon

ApplicaHons

NLP	with	Feedforward	Networks

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…

f(x)
?? em

b(raises)

‣Word	embeddings	for	each	word	form	input

‣ ~1000	features	here	—	smaller	feature	vector	
than	in	sparse	models,	but	every	feature	fires	on	
every	example

em
b(interest)

em
b(rates)‣Weight	matrix	learns	posiHon-dependent	

processing	of	the	words

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs

NLP	with	Feedforward	Networks

‣ Hidden	layer	mixes	these	
different	signals	and	learns	
feature	conjuncHons

Botha	et	al.	(2017)

NLP	with	Feedforward	Networks
‣MulHlingual	tagging	results:

Botha	et	al.	(2017)

‣ Gillick	used	LSTMs;	this	is	smaller,	faster,	and	be8er

SenHment	Analysis
‣ Deep	Averaging	Networks:	feedforward	neural	network	on	average	of	
word	embeddings	from	input

Iyyer	et	al.	(2015)

SenHment	Analysis

{

{
Bag-of-words

Tree	RNNs	/	
CNNS	/	LSTMS

Wang	and	
Manning	(2012)

Kim	(2014)

Iyyer	et	al.	(2015)

ImplementaHon	Details

ComputaHon	Graphs

‣ CompuHng	gradients	is	hard!	ComputaHon	graph	abstracHon	allows	us	to	
define	a	computaHon	symbolically	and	will	do	this	for	us

‣ AutomaHc	differenHaHon:	keep	track	of	derivaHves	/	be	able	to	
backpropagate	through	each	funcHon:

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Use	a	library	like	Pytorch	or	Tensorflow.	This	class:	Pytorch

ComputaHon	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

‣ Define	forward	pass	for

ComputaHon	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):
ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Training	a	Model

Define	a	computaHon	graph

For	each	epoch:

Compute	loss	on	batch

For	each	batch	of	data:

Decode	test	set

Autograd	to	compute	gradients

Take	step	with	opHmizer

Next	Time

‣Word	representaHons	/	word	vectors

‣word2vec,	GloVe

‣ Training	neural	networks

