CS388: Natural Language Processing

Lecture 7: Word Embeddings

Greg Durrett

Administrivia

Mini 1 grades out soon

Project 1 due Thursday

Recall: Feedforward NNs

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

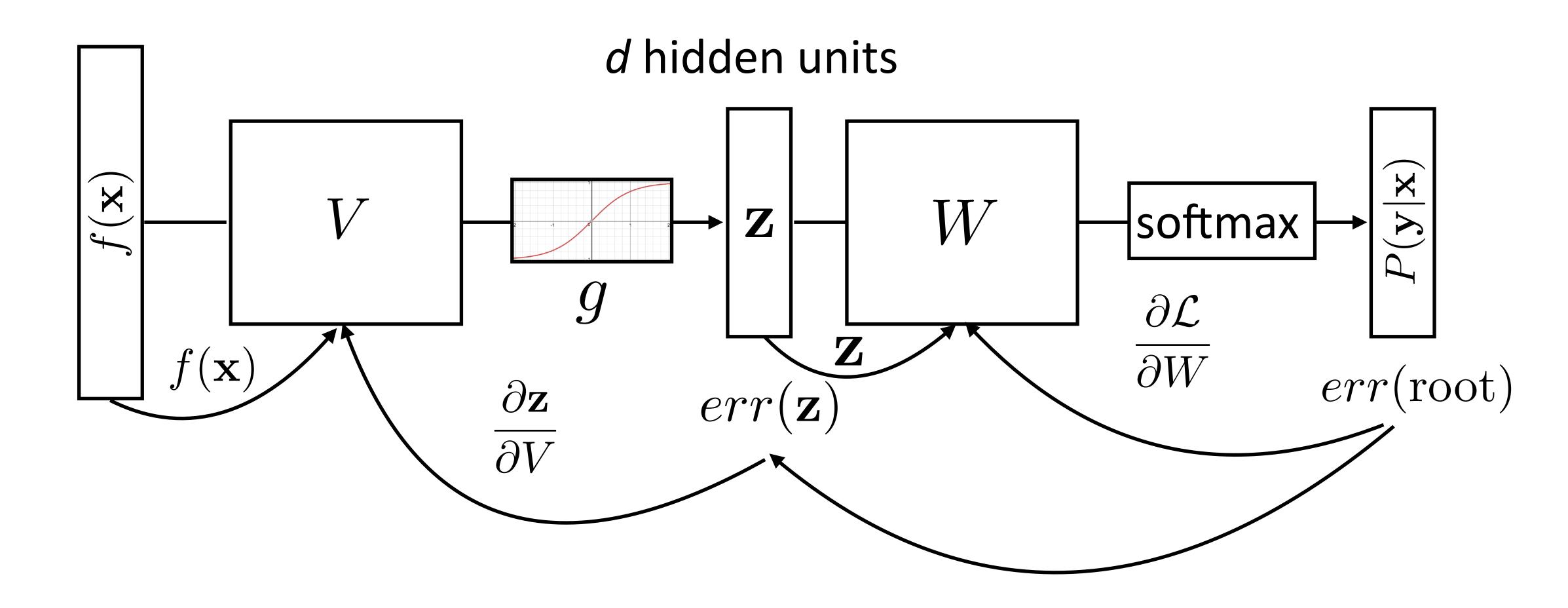
$$d \text{ hidden units}$$

$$v \quad d \text{ in matrix}$$

$$d \text{ nonlinearity}$$

Recall: Backpropagation

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



This Lecture

- Implementing NNs
- Training tips
- Word representations
- word2vec/GloVe
- Evaluating word embeddings

Implementing NNs

(see ffnn_example.py on the course website)

Computation Graphs

- Computing gradients is hard! Computation graph abstraction allows us to define a computation symbolically and will do this for us
- ▶ Automatic differentiation: keep track of derivatives / be able to backpropagate through each function:

$$y = x * x$$
 \longrightarrow $(y,dy) = (x * x, 2 * x * dx)$ codegen

Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

```
class FFNN(nn.Module):
    def init (self, inp, hid, out):
        super(FFNN, self). init ()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x)))
```

Computation Graphs in Pytorch

```
ei*: one-hot vector
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x}))) of the label
                                     (e.g., [0, 1, 0])
ffnn = FFNN()
def make update(input, gold label):
   ffnn.zero grad() # clear gradient variables
   probs = ffnn.forward(input)
   loss = torch.neg(torch.log(probs)).dot(gold label)
   loss.backward()
   optimizer.step()
```


Training a Model

Define a computation graph

For each epoch:

For each batch of data:

Compute loss on batch

Autograd to compute gradients

Take step with optimizer

Decode test set

Training Tips

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

▶ Batch sizes from 1-100 often work well

Training Basics

- Basic formula: compute gradients on batch, use first-order optimization method (SGD, Adagrad, etc.)
- ▶ How to initialize? How to regularize? What optimizer to use?
- ▶ This lecture: some practical tricks. Take deep learning or optimization courses to understand this further

How does initialization affect learning?

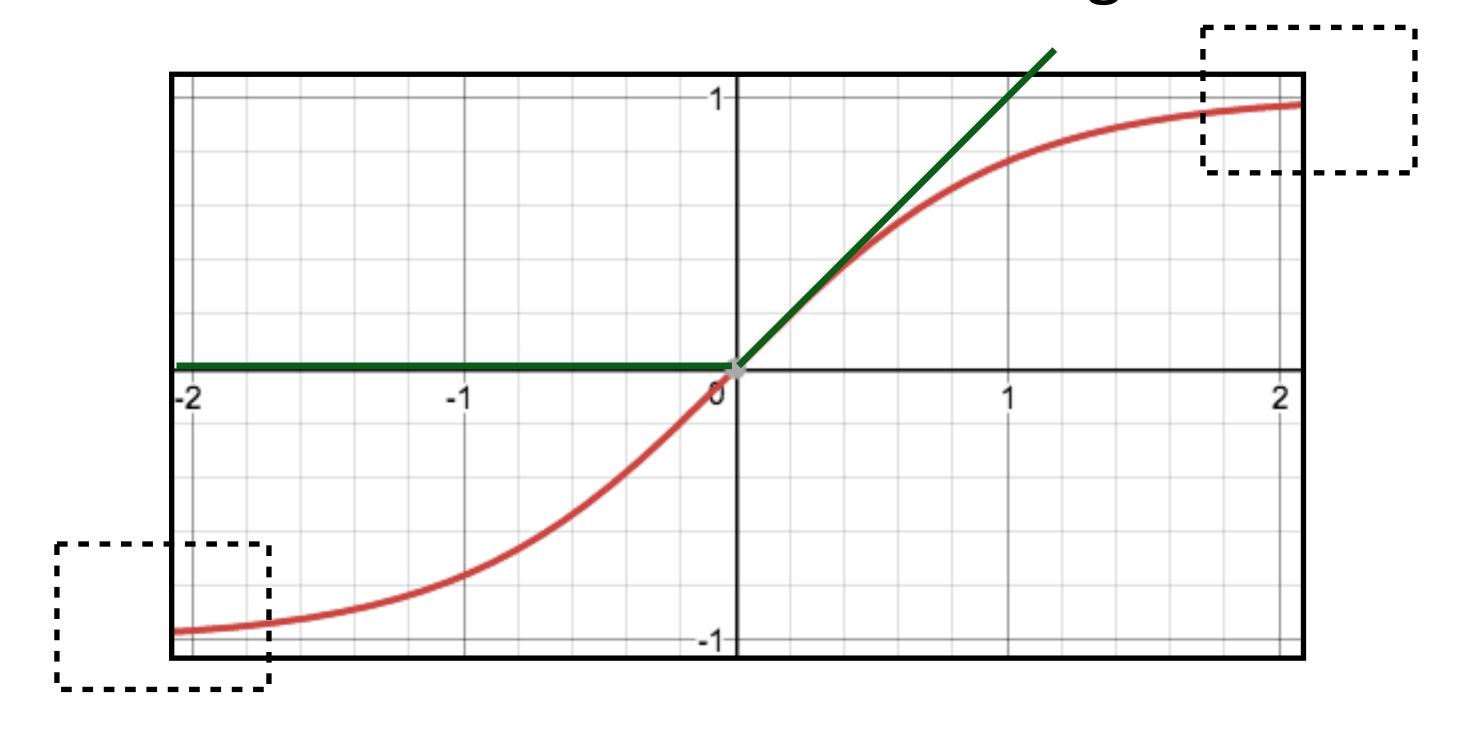
$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



- ▶ How do we initialize V and W? What consequences does this have?
- Nonconvex problem, so initialization matters!

How does initialization affect learning?

Nonlinear model...how does this affect things?



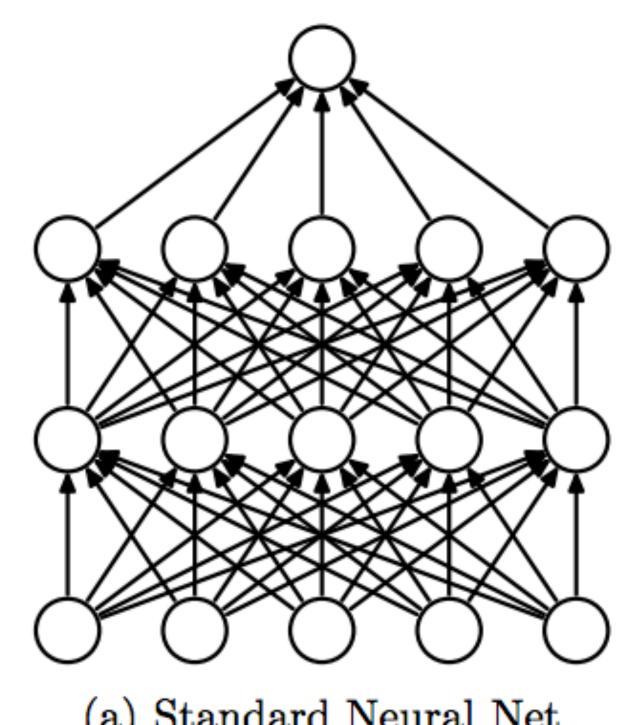
- If cell activations are too large in absolute value, gradients are small
- ▶ ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative

Initialization

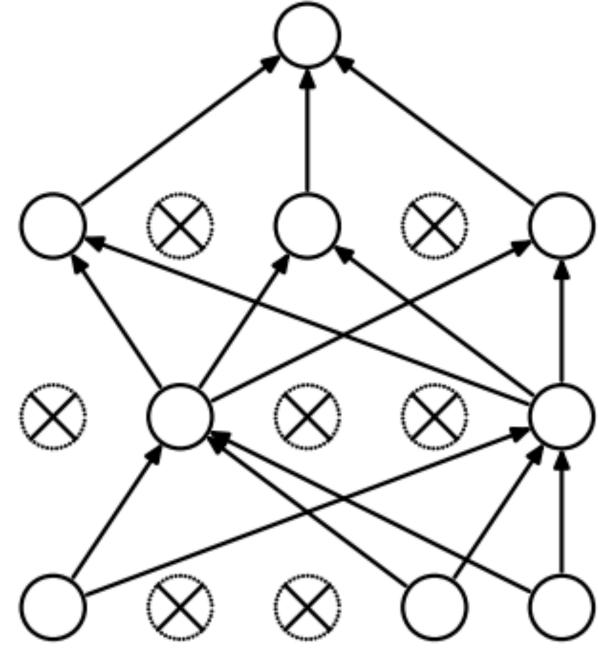
- 1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change
- 2) Initialize too large and cells are saturated
- ▶ Can do random uniform / normal initialization with appropriate scale
- ▶ Glorot initializer: $U\left[-\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}}, +\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}}\right]$
 - Want variance of inputs and gradients for each layer to be the same
- ▶ Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy



(a) Standard Neural Net



(b) After applying dropout.

One line in Pytorch/Tensorflow

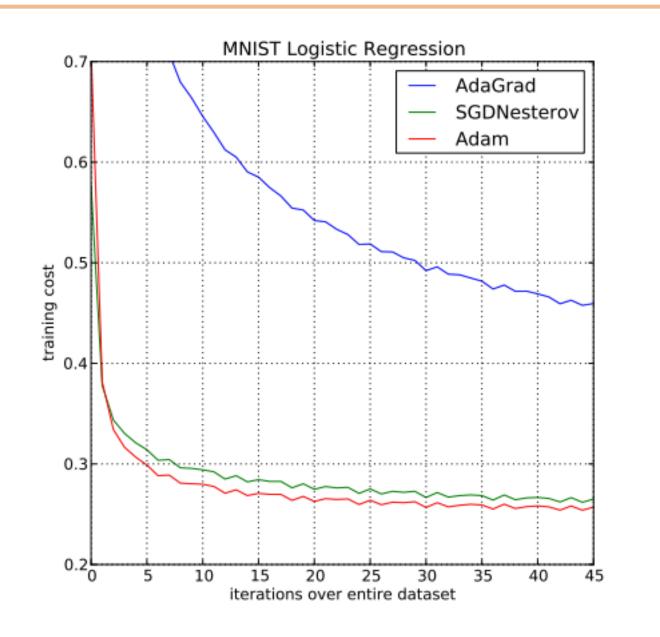
Srivastava et al. (2014)

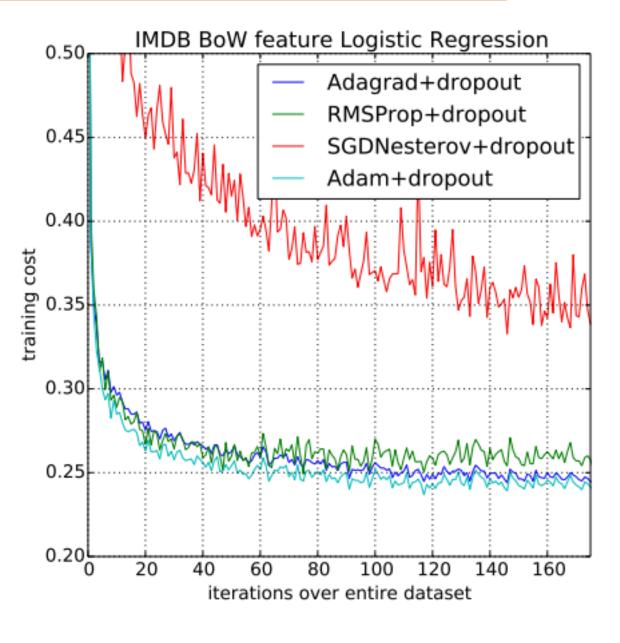
Optimizer

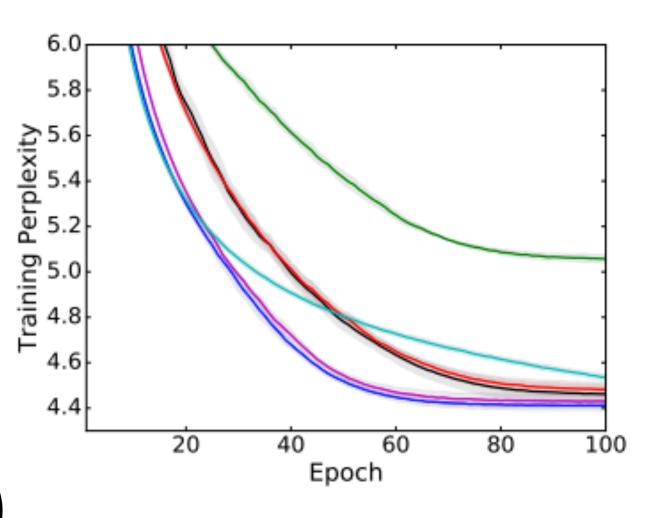
 Adam (Kingma and Ba, ICLR 2015): very widely used. Adaptive step size
 + momentum

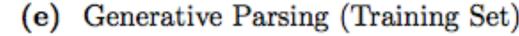
Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)

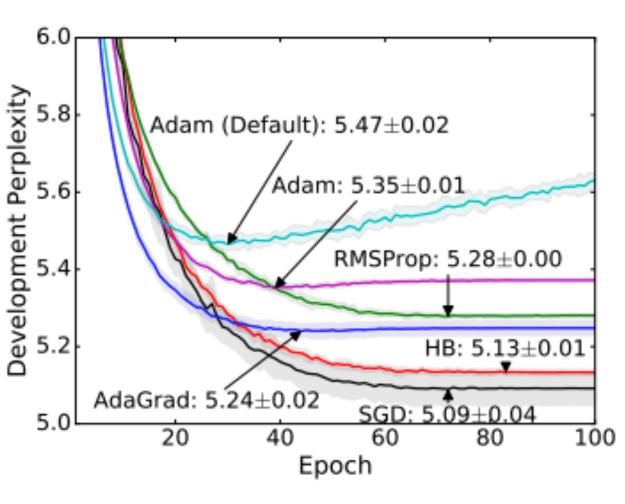
One more trick: gradient clipping (set a max value for your gradients)









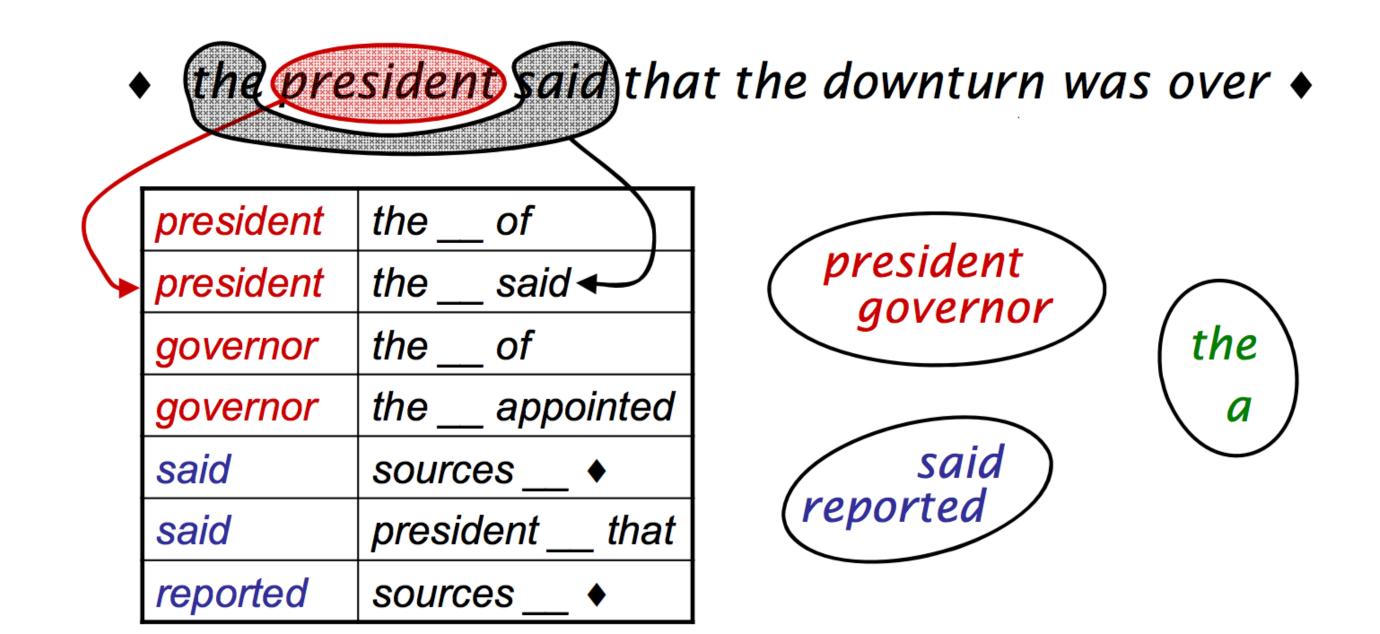


(f) Generative Parsing (Development Set)

Word Representations

Word Representations

- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input
- You shall know a word by the company it keeps" Firth (1957)



slide credit: Dan Klein

Word Embeddings

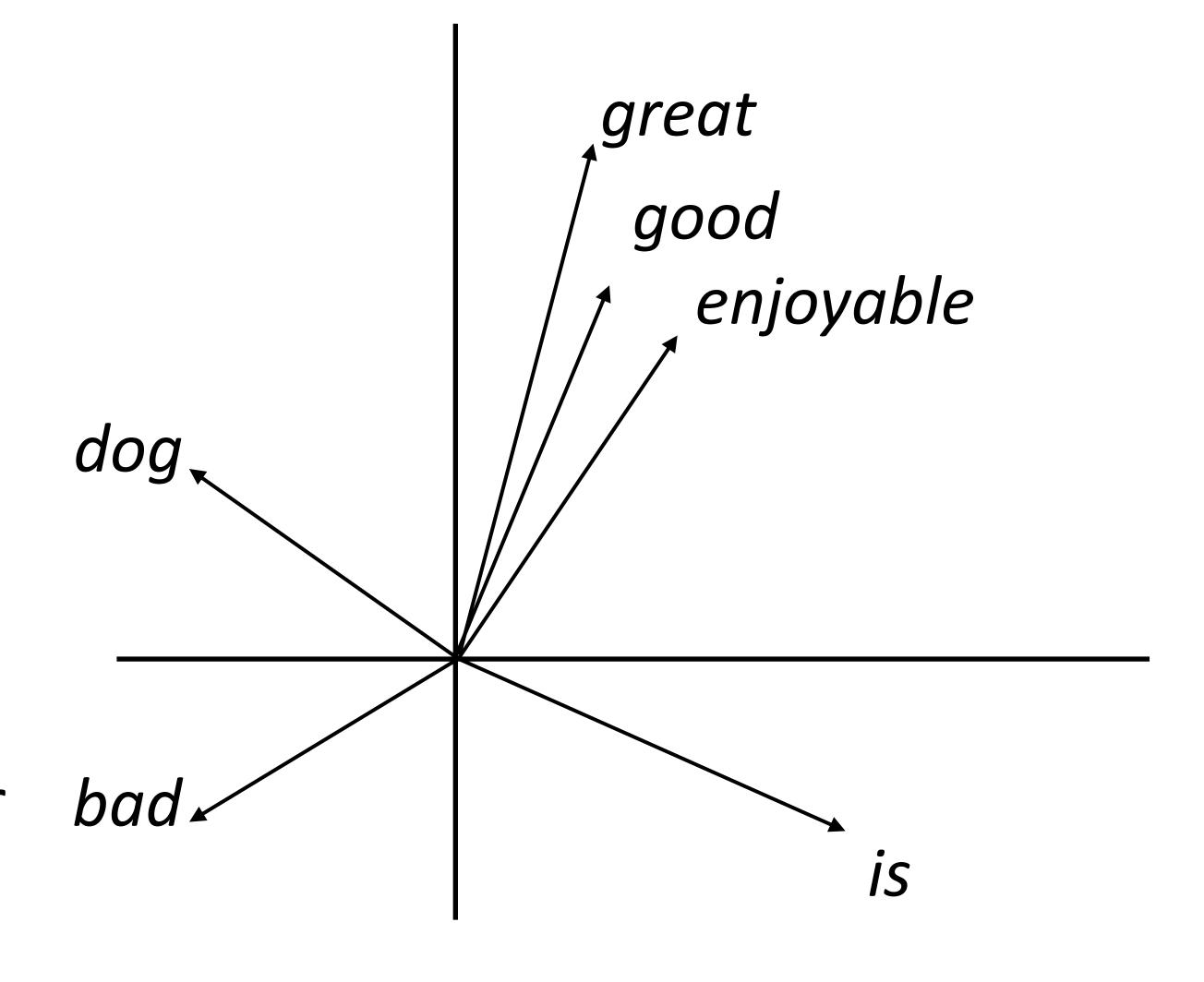
Want a vector space where similar words have similar embeddings

the movie was great

 \approx

the movie was good

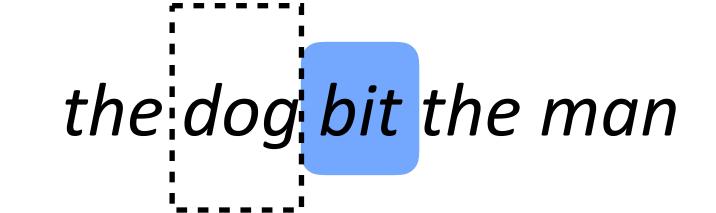
- Goal: come up with a way to produce these embeddings
- For each word, want "medium" dimensional vector (50-300 dims) representing it

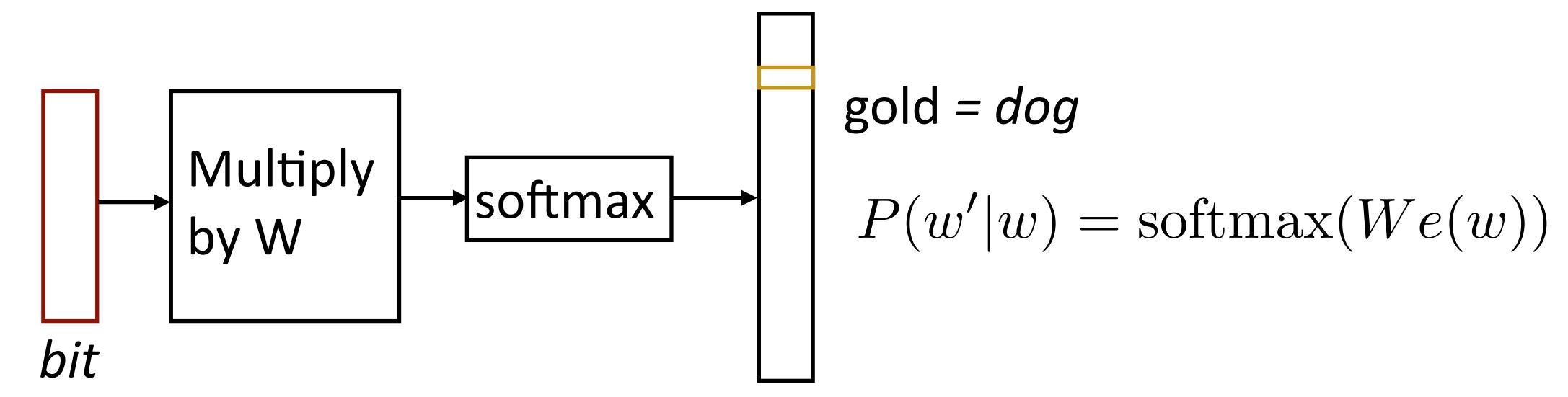


word2vec/GloVe

Skip-Gram

Predict one word of context from word





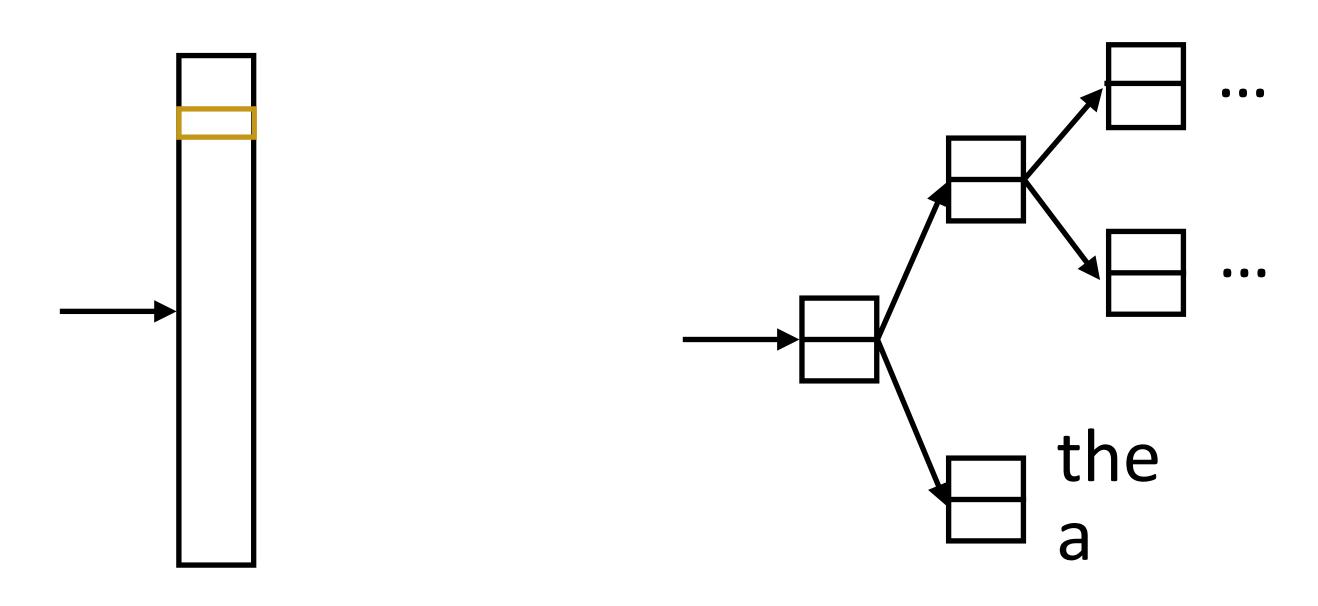
- Another training example: bit -> the
- ▶ Parameters: *d* x |V| vectors, |V| x *d* output parameters (W) (also usable as vectors!)

Mikolov et al. (2013)

Hierarchical Softmax

$$P(w|w_{-1}, w_{+1}) = \operatorname{softmax}(W(c(w_{-1}) + c(w_{+1})))$$
 $P(w'|w) = \operatorname{softmax}(We(w))$

▶ Matmul + softmax over |V| is very slow to compute for CBOW and SG



- Huffman encode
 vocabulary, use binary
 classifiers to decide
 which branch to take
- log(|V|) binary decisions

Standard softmax:|V| dot productsof size d

Hierarchical softmax:log(|V|) dot products of size d,|V| x d parameters

Skip-Gram with Negative Sampling

▶ Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

(bit, the) => +1
$$(bit, cat) => -1 \qquad P(y=1|w,c) = \frac{e^{w\cdot c}}{e^{w\cdot c}+1} \qquad \text{words in similar contexts select for similar } c$$

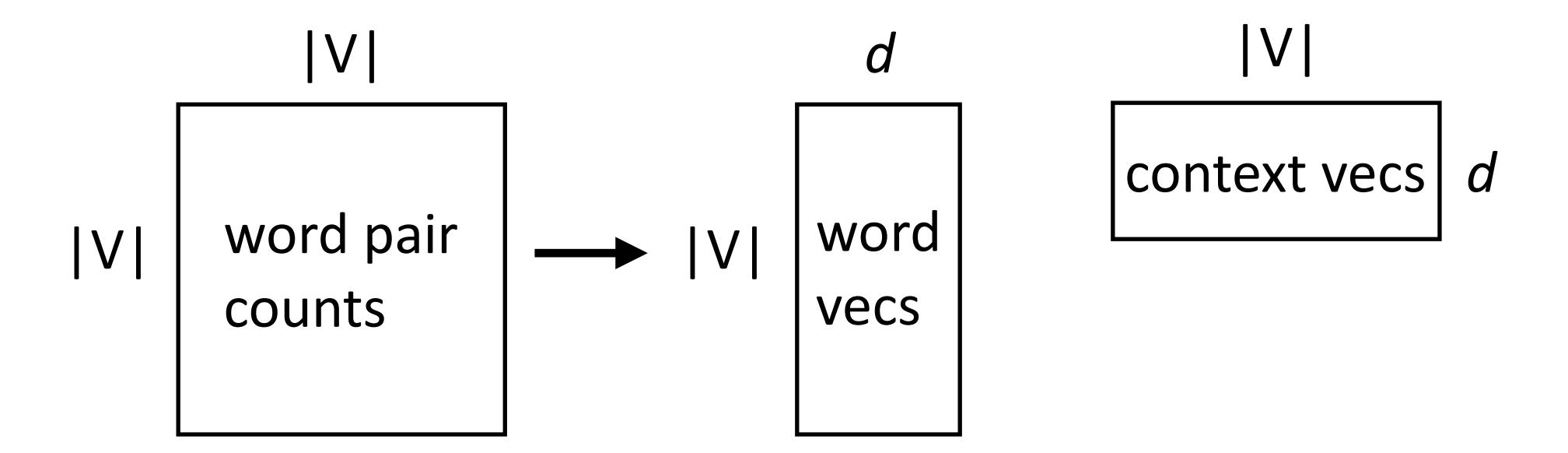
▶ d x |V| vectors, d x |V| context vectors (same # of params as before)

Objective =
$$\log P(y=1|w,c) + \frac{1}{k} \sum_{i=1}^n \log P(y=0|w_i,c)$$

Mikolov et al. (2013)

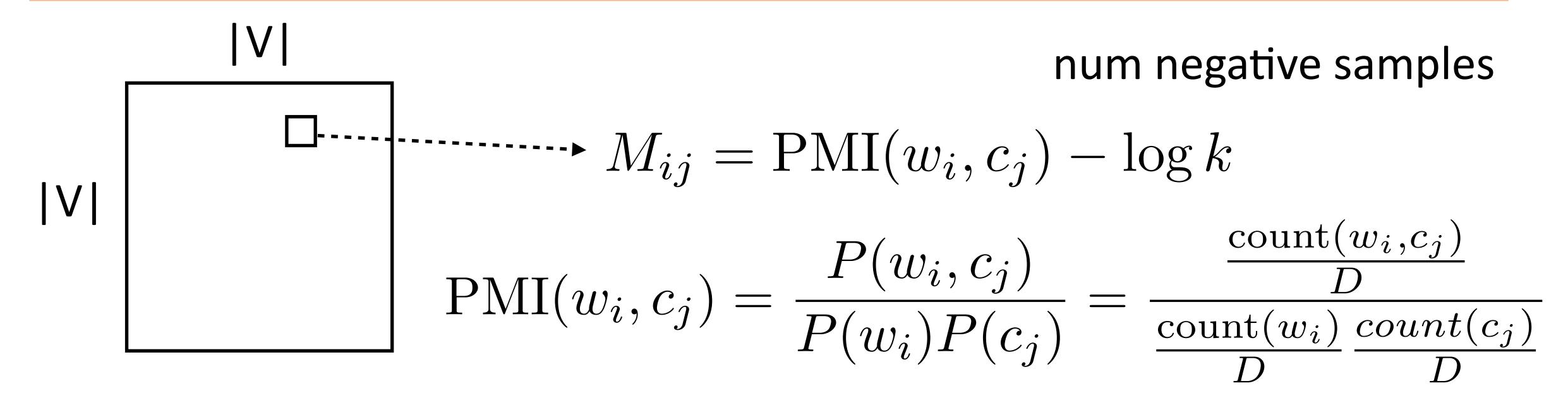
Connections with Matrix Factorization

Skip-gram model looks at word-word co-occurrences and produces two types of vectors



Looks almost like a matrix factorization...

Skip-Gram as Matrix Factorization



Skip-gram objective exactly corresponds to factoring this matrix:

- If we sample negative examples from the unigram distribution over words
- ...and it's a weighted factorization problem (weighted by word freq)

Levy et al. (2014)

GloVe (Global Vectors)

Also operates on counts matrix, weighted regression on the log co-occurrence matrix word pair counts

- Objective = $\sum_{i,j} f(\operatorname{count}(w_i, c_j)) \left(w_i^{\top} c_j + a_i + b_j \log \operatorname{count}(w_i, c_j) \right)^2$
- Constant in the dataset size (just need counts), quadratic in voc size
- ▶ By far the most common word vectors used today (5000+ citations)

Pennington et al. (2014)

fastText: Sub-word Embeddings

▶ Same as SGNS, but break words down into n-grams with n = 3 to 6

where:

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>,

5-grams: <wher, where, here>,

6-grams: <where, where>

Replace $w \cdot c$ in skip-gram computation with $\left(\sum_{g \in ngrams} w_g \cdot c\right)$

Advantages?

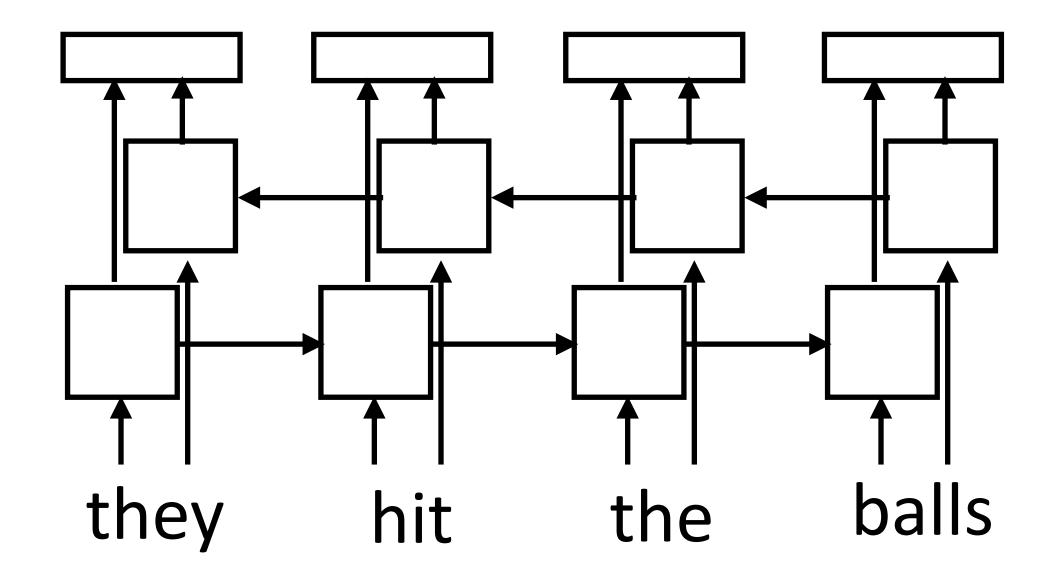
Using Word Embeddings

- Approach 1: learn embeddings as parameters from your data
 - Often works pretty well
- ▶ Approach 2: initialize using GloVe, keep fixed
 - Faster because no need to update these parameters
- Approach 3: initialize using GloVe, fine-tune
 - Works best for some tasks

Preview: Context-dependent Embeddings

▶ How to handle different word senses? One vector for balls





- ▶ Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors
- Context-sensitive word embeddings: depend on rest of the sentence
- Huge improvements across nearly all NLP tasks over GloVe

Compositional Semantics

What if we want embedding representations for whole sentences?

▶ Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)

Is there a way we can compose vectors to make sentence representations? Summing?

Will return to this in a few weeks as we move on to syntax and semantics

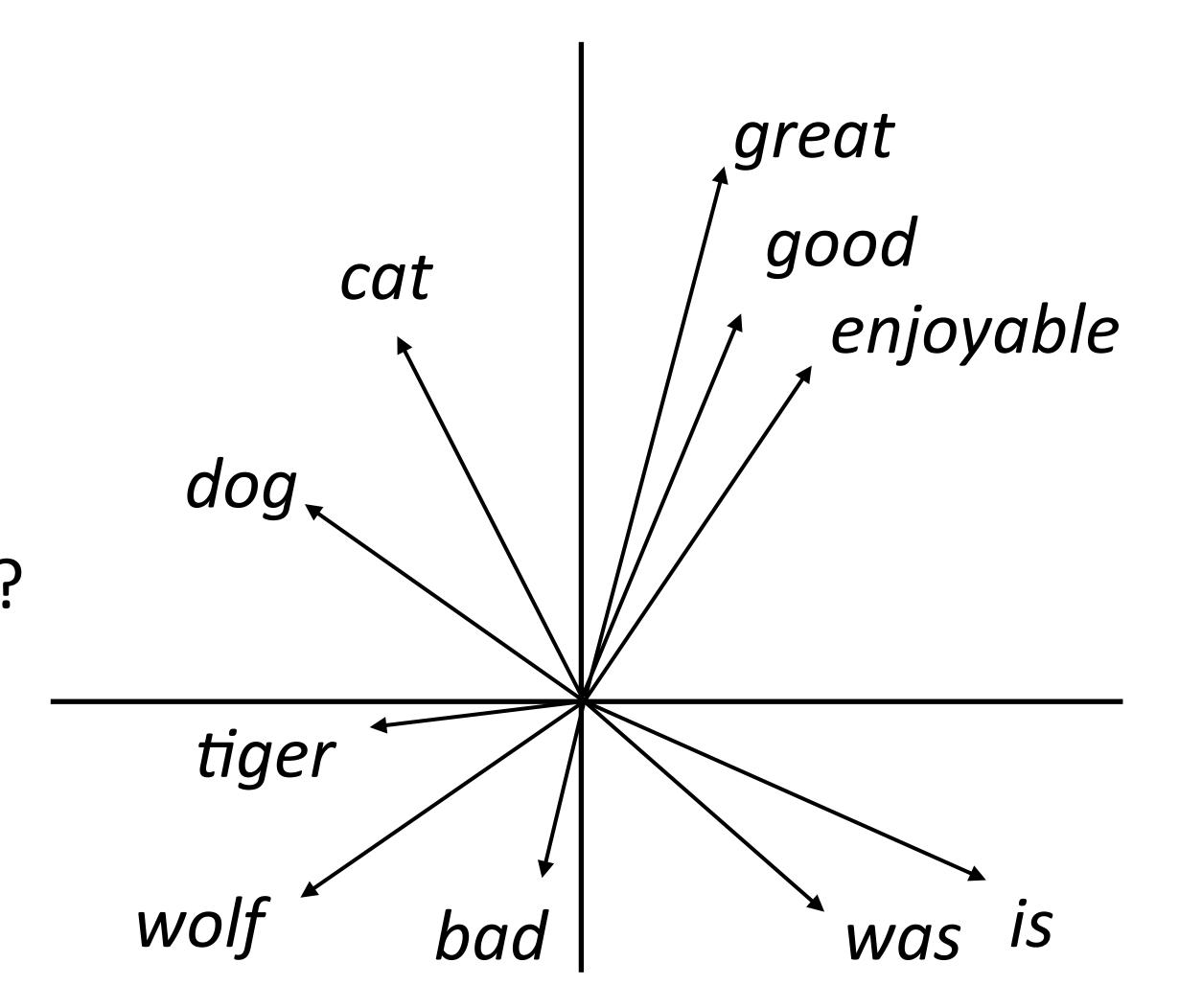
Evaluation

Evaluating Word Embeddings

- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other
- Analogy:

good is to best as smart is to ???

Paris is to France as Tokyo is to ???



Similarity

Method	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et al.
	Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex
PPMI	.755	.697	.745	.686	.462	.393
SVD	.793	.691	.778	.666	.514	.432
SGNS	.793	.685	.774	.693	.470	.438
GloVe	.725	.604	.729	.632	.403	.398

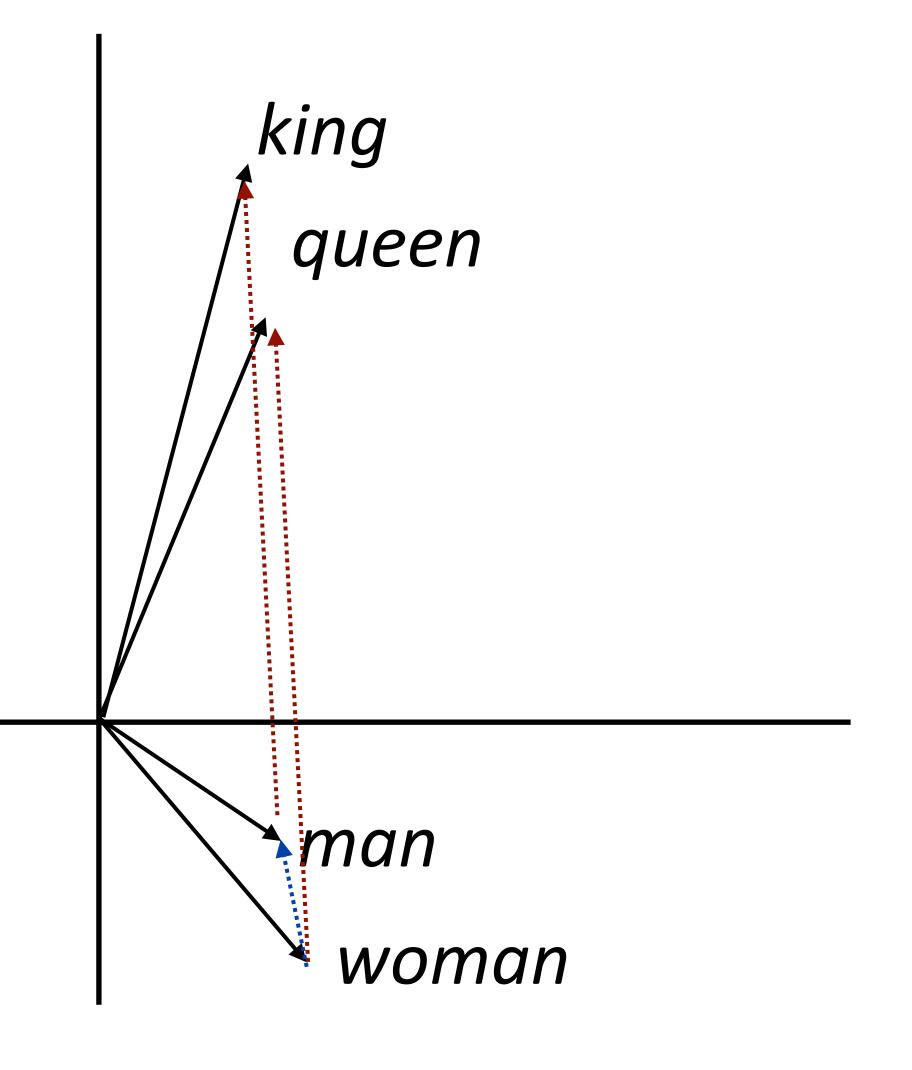
- ▶ SVD = singular value decomposition on PMI matrix
- GloVe does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don't matter in practice

Analogies

(king - man) + woman = queen

king + (woman - man) = queen

- Why would this be?
- woman man captures the difference in the contexts that these occur in
- Dominant change: more "he" with man and "she" with woman — similar to difference between king and queen
- Can evaluate on this as well



What can go wrong with word embeddings?

- What's wrong with learning a word's "meaning" from its usage?
- What data are we learning from?
- What are we going to learn from this data?

What do we mean by bias?

Identify she - he axis in word vector space, project words onto this axis

Nearest neighbor of (b - a + c)

Extreme she occupations

1 1 1	•	0
1. homemaker	2. nurse	3. receptionist
4. librarian	5. socialite	6. hairdresser
7. nanny	8. bookkeeper	9. stylist
10. housekeeper	11. interior designer	12. guidance counselor

Extreme he occupations

		P 0101012
1. maestro	2. skipper	3. protege
4. philosopher	5. captain	6. architect
7. financier	8. warrior	9. broadcaster
10. magician	11. figher pilot	12. boss

Bolukbasi et al. (2016)

Racial Analogies		
$black \rightarrow homeless$	$caucasian \rightarrow servicemen$	
caucasian \rightarrow hillbilly	asian \rightarrow suburban	
asian \rightarrow laborer	$black \rightarrow landowner$	
Religious Analogies		
$jew \rightarrow greedy$	$muslim \rightarrow powerless$	
$christian \rightarrow familial$	$muslim \rightarrow warzone$	
$muslim \rightarrow uneducated$	christian \rightarrow intellectually	

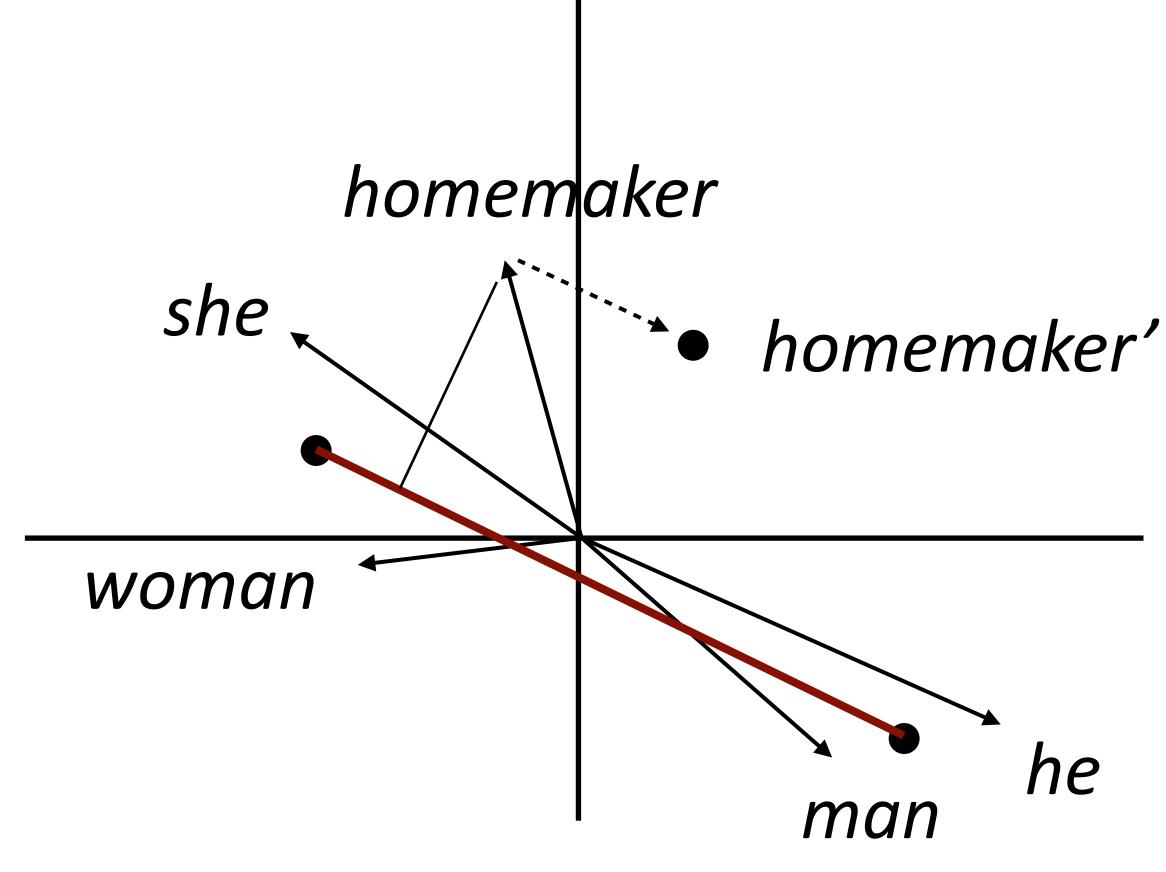
Manzini et al. (2019)

Debiasing

Identify gender subspace with gendered words

Project words onto this subspace

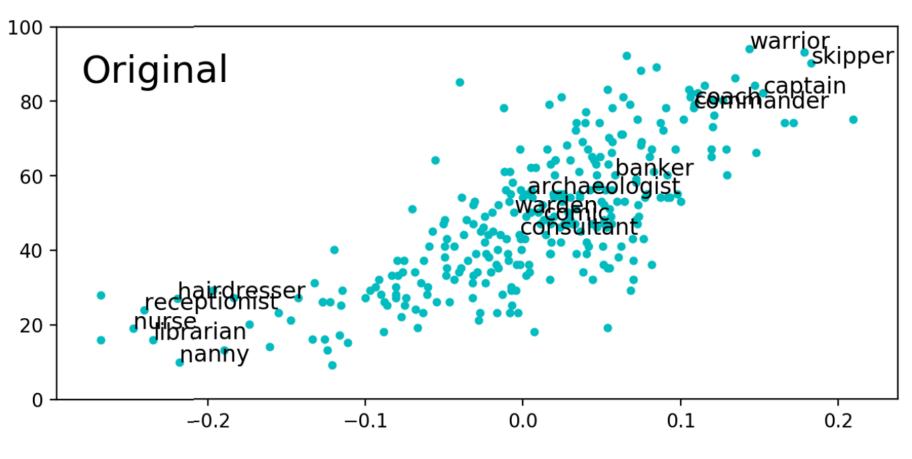
Subtract those projections from the original word

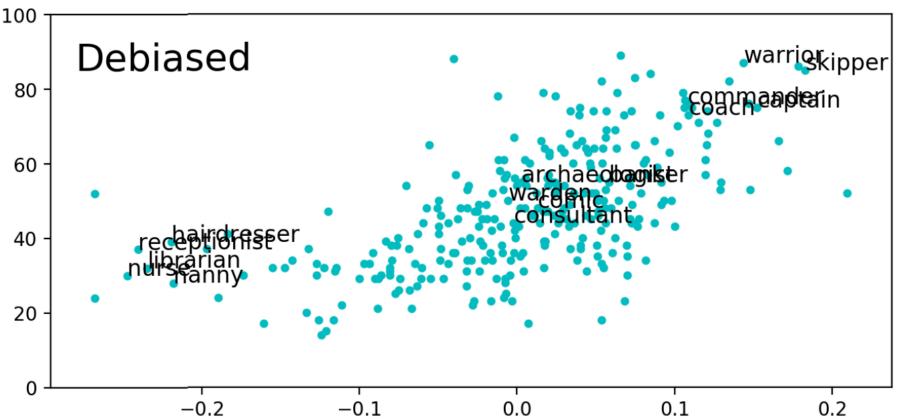


Bolukbasi et al. (2016)

Hardness of Debiasing

- Not that effective...and the male and female words are still clustered together
- Bias pervades the word embedding space and isn't just a local property of a few words





(a) The plots for HARD-DEBIASED embedding, before (top) and after (bottom) debiasing.

Gonen and Goldberg (2019)

Takeaways

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- Lots of pretrained embeddings work well in practice, they capture some desirable properties
- Even better: context-sensitive word embeddings (ELMo)
- Next time: RNNs and CNNs