
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	8:	RNNs

Credit:	Chelsea	Voss	csvoss.com

http://csvoss.com

Administrivia

‣Mini	1	back	today

‣ Project	1	due	tonight

‣Mini	2	out	tonight

Recall:	Word	Vectors

good
enjoyable

bad

dog

great

is

Recall:	Skip-Gram

the	dog	bit	the	man
‣ Predict	one	word	of	context	from	word

bit

soNmaxMulOply	
by	W

gold	=	dog

‣ Parameters:	d	x	|V|	vectors,	|V|	x	d	output	parameters	(W)	(also	
usable	as	vectors!)

‣ Another	training	example:	bit	->	the

P (w0|w) = softmax(We(w))

Mikolov	et	al.	(2013)

This	Lecture

‣ Recurrent	neural	networks:	basics,	issues

‣ LSTMs	/	GRUs

‣ ApplicaOons	/	visualizaOons

‣ EvaluaOng	word	embeddings

EvaluaOng	Word	Embeddings

EvaluaOng	Word	Embeddings

‣What	properOes	of	language	should	word	embeddings	capture?

good
enjoyable

bad

dog

great

is

cat

wolf

6ger

was

‣ Similarity:	similar	words	are	close	to	
each	other

‣ Analogy:

Paris	is	to	France	as	Tokyo	is	to	???

good	is	to	best	as	smart	is	to	???

Similarity

Levy	et	al.	(2015)

‣ SVD	=	singular	value	decomposiOon	on	PMI	matrix

‣ GloVe	does	not	appear	to	be	the	best	when	experiments	are	carefully	
controlled,	but	it	depends	on	hyperparameters	+	these	disOncOons	don’t	
ma8er	in	pracOce

Analogies

queen

king

woman

man

(king	-	man)	+	woman	=	queen

‣Why	would	this	be?

‣ woman	-	man	captures	the	difference	in	
the	contexts	that	these	occur	in

king	+	(woman	-	man)	=	queen

‣ Dominant	change:	more	“he”	with	man	
and	“she”	with	woman	—	similar	to	
difference	between	king	and	queen

‣ Can	evaluate	on	this	as	well

What	can	go	wrong	with	word	embeddings?

‣What’s	wrong	with	learning	a	word’s	“meaning”	from	its	usage?

‣What	data	are	we	learning	from?

‣What	are	we	going	to	learn	from	this	data?

What	do	we	mean	by	bias?

‣ IdenOfy	she	-	he	axis	in	
word	vector	space,	
project	words	onto	this	
axis

Bolukbasi	et	al.	(2016)

Manzini	et	al.	(2019)

‣ Nearest	neighbor	of	(b	-	
a	+	c)

Debiasing

Bolukbasi	et	al.	(2016)

‣ IdenOfy	gender	subspace	with	gendered	
words

she

he

homemaker

woman

man

‣ Project	words	onto	this	subspace

‣ Subtract	those	projecOons	from	
the	original	word

homemaker’

Hardness	of	Debiasing

Gonen	and	Goldberg	(2019)

‣ Not	that	effecOve…and	the	male	
and	female	words	are	sOll	
clustered	together

‣ Bias	pervades	the	word	embedding	
space	and	isn’t	just	a	local	property	
of	a	few	words

RNN	Basics

RNN	MoOvaOon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiOon	in	the	
feature	vector	has	fixed	semanOcs

‣ Instead,	we	need	to:
1)	Process	each	word	in	a	uniform	way

the		movie		was			great that			was			great					!

2)	…while	sOll	exploiOng	the	context	that	that	token	occurs	in

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)

RNN	AbstracOon
‣ Cell	that	takes	some	input	x,	has	some	hidden	state	h,	and	updates	that	
hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

(previous	c) (next	c)

input	x

output	y

RNN	Uses
‣ Transducer:	make	some	predicOon	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	senOment	(matmul	+	soNmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	soNmax

Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

yt = tanh(Uht + by)

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)

Training	Elman	Networks

the		movie		was			great

predict	senOment

‣ “BackpropagaOon	through	Ome”:	build	the	network	as	one	big	
computaOon	graph,	some	parameters	are	shared

‣ RNN	potenOally	needs	to	learn	how	to	“remember”	informaOon	for	a	
long	Ome!

it	was	my	favorite	movie	of	2016,	though	it	wasn’t	without	problems	->	+

‣ “Correct”	parameter	update	is	to	do	a	be8er	job	of	remembering	the	
senOment	of	favorite

Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	not	in	[-2,	2],	
gradient	is	almost	0

<-	gradient<-	smaller	gradient<-	Ony	gradient

h8p://colah.github.io/posts/2015-08-
Understanding-LSTMs/

‣ Repeated	mulOplicaOon	by	V	causes	problems ht = tanh(Wxt + V ht�1 + bh)

LSTMs/GRUs

Gated	ConnecOons
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

‣ Vector-valued	“forget	gate”	f	computed	
based	on	input	and	previous	hidden	state

‣ Sigmoid:	elements	of	f	are	in	(0,	1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣ 	If	f	≈	1,	we	simply	sum	up	a	funcOon	of	all	inputs	—	gradient	
doesn’t	vanish!	More	stable	without	matrix	mulOply	(V)	as	well

LSTMs

‣ “Cell”	c	in	addiOon	to	hidden	state	h

‣ Vector-valued	forget	gate	f	depends	on	the	h	hidden	state

‣ Basic	communicaOon	flow:	x	->	c	->	h	->	output,	each	step	of	this	
process	is	gated	in	addiOon	to	gates	from	previous	Omesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)

‣ “Long	short-term	memory”	network:	hidden	state	is	a	“short-term”	memory

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h8p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ f,	i,	o	are	gates	that	control	informaOon	flow

‣ g	reflects	the	main	computaOon	of	the	cell

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can	we	ignore	the	old	value	of	c	for	this	Omestep?

‣ Can	we	ignore	a	parOcular	input	x?
‣ Can	an	LSTM	sum	up	its	inputs	x?

‣ Can	we	output	something	without	changing	c?

LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h8p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ Ignoring	recurrent	state	enOrely:

‣ Lets	us	discard	stopwords
‣ Summing	inputs:

‣ Lets	us	get	feedforward	layer	over	token
‣ Ignoring	input:

‣ Lets	us	compute	a	bag-of-words	
representaOon

LSTMs

‣ Gradient	sOll	diminishes,	but	in	a	controlled	way	and	generally	by	less	—	
someOmes	iniOalize	forget	gate	=	1	to	remember	everything	to	start

<-	gradientsimilar	gradient	<-

h8p://colah.github.io/posts/2015-08-Understanding-LSTMs/

What	do	RNNs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predicOon	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classificaOon	decision	about	the	sentence

the		movie		was			great

‣ RNN	can	be	viewed	as	a	transformaOon	of	a	sequence	of	vectors	into	a	
sequence	of	context-dependent	vectors

MulOlayer	BidirecOonal	RNN

‣ Sentence	classificaOon	
based	on	concatenaOon	
of	both	final	outputs

‣ Token	classificaOon	based	on	
concatenaOon	of	both	direcOons’	
token	representaOons

the		movie		was			great the		movie		was			great

Training	RNNs

the		movie		was			great

‣ Loss	=	negaOve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	enOre	network
‣ Example:	senOment	analysis

Training	RNNs

the		movie		was			great

‣ Loss	=	negaOve	log	likelihood	of	probability	of	gold	predicOons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)	or	POS	tagging

ApplicaOons

What	can	LSTMs	model?
‣ SenOment

‣ TranslaOon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leN-to-right,	per-token	predicOon

‣ Encode	sentence	+	then	decode,	use	token	predicOons	for	a8enOon	
weights	(later	in	the	course)

Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Counter:	know	when	to	generate	\n
‣ Visualize	acOvaOons	of	specific	cells	(components	of	c)	to	understand	them

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Binary	switch:	tells	us	if	we’re	in	a	quote	or	not
‣ Visualize	acOvaOons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Stack:	acOvaOon	based	on	indentaOon
‣ Visualize	acOvaOons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	acOvaOon

‣ Visualize	acOvaOons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

What	can	LSTMs	model?
‣ SenOment

‣ TranslaOon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leN-to-right,	per-token	predicOon

‣ Encode	sentence	+	then	decode,	use	token	predicOons	for	a8enOon	
weights	(later	in	the	course)

‣ Textual	entailment

‣ Encode	two	sentences,	predict

SenOment	Analysis

Dai	and	Le	(2015)

‣ Semi-supervised	method:	iniOalize	the	language	model	by	training	to	
reproduce	the	document	in	a	seq2seq	fashion	(a	type	of	pre-training	called	
a	sequenOal	autoencoder)

Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

neutral

‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

‣ Early	datasets:	small	(hundreds	of	pairs),	very	ambiOous	(lots	of	world	
knowledge,	temporal	reasoning,	etc.)

Premise Hypothesis

SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capOons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

300D	LSTM:	80%	accuracy	
																(Bowman	et	al.,	2016)

300D	BiLSTM:	83%	accuracy	
																(Liu	et	al.,	2016)

‣ Encode	each	sentence	and	process

‣ Later:	be8er	models	for	this

Takeaways

‣ RNNs	can	transduce	inputs	(produce	one	output	for	each	input)	or	
compress	the	whole	input	into	a	vector

‣ Useful	for	a	range	of	tasks	with	sequenOal	input:	senOment	analysis,	
language	modeling,	natural	language	inference,	machine	translaOon

