
CS395T Project 2: Shift-Reduce Parsing

Submitted by: Tanya Goyal

Abstract

In this project, we explore transition based
models for unlabeled dependency parsing.
We first implement an arc standard tran-
sition system with a greedy shift-reduce
parser. The parser greedily chooses the
best decision from available legal deci-
sions at every state. Next, we implement a
global parser using beam search for the arc
standard system. Finally, we extend our
analysis to other transition systems, such
as Nivre’s arc eager and arc hybrid transi-
tion systems.

1 Introduction

A dependency tree is a syntactic tree-structured
representation of a sentence. It specifies relations
between words in a sentence, denoted by labeled
directed arcs. Dependency parsing is the task of
inferring these relations between words of a given
sentence.
In this project, we focus on identifying the
unlabeled dependencies between words. More
specifically, for each word in a given sentence,
we identify its head word, without worrying
about the corresponding label. We evaluate the
algorithms by measuring the number of unlabeled
dependencies identified correctly, as a ratio of the
total dependencies in the test set.

1.1 Arc Standard Transition System

The algorithm maintains a configuration of stack,
input buffer, and dependencies. They are initial-
ized with the ROOT element, word tokens and an
empty list respectively. At each step, the algorithm
takes one of the following three actions: Left-arc,
Right-arc, or Shift. The former two operations
assert a dependency relation between the top el-
ements of the stack, whereas the Shift operation

pushes the top element of the buffer into the stack.
In order to train the dependency model, we first
generate (state-decision) pairs that specify the
gold decisions of the arc-standard oracle for the
given observed state. A multi-class classifier is
then trained over this data. In this project, we
implement the greedy and beam search based ap-
proaches for training and parsing.

2 Implementation Details

2.1 Part 1: Greedy Shift-Reduce Parsing
The arc standard oracle is used to generate gold
(parser state, decision) pairs. We build a multi-
class classifier that looks at the current state and
predicts the appropriate decision for that state. In
the greedy shift-reduce parsing, the system only
encounters gold parser states during training.
Decode: For a given test sentence, the parser itera-
tively evaluates parser states, and takes the greedy
action as determined by the multi class classifier.
We perform additional checks to ensure that the
system does not take illegal actions/decisions even
if it the highest scored action.
Figure 1 gives an outline of the UAS score
achieved by the greedy shift reduce parser. We
compare the performance of logistic and averaged
perceptron; both were trained using stochastic gra-
dient descent. We achieve a UAS score of 79.98
using averaged perceptron, trained over 5 epochs.

2.2 Part 2: Global Beam Search
One of the shortcomings of the greedy shift reduce
parser is that it offers no lookahead to the sys-
tem. At each step, the optimal transition is decided
based entirely on the current configuration, with-
out considering past or future configurations that
would result due to the current decision. We im-
plement a global beam search parser that addresses
this shortcoming.
In global beam search, instead of selecting deci-
sions with the highest score for each state, we ac-



Figure 1: UAS scores for the greedy shift reduce
parsers. We compare the performance of multi-
class logistic and averaged perceptron, across dif-
ferent epochs. The learning rate for logistic re-
gression is set to 0.01 (determined empirically).

cumulate scores over successive states, and select
the state/decision sequence that leads to the high-
est score. For each sentence, we initialize a beam
of size k, containing only the initial state configu-
ration. At every step m, we determine all possible
legal successors for the states in the beam at step
m � 1, and retain the top k choices. We follow
this process iteratively, till we reach the final state.
The states/decision sequences that correspond to
the head of the beam is outputted as the predicted
dependency parse.
To train the model, the gold decisions and state
sequences is determined using the arc standard or-
acle, similar to the greedy approach. In this im-
plementation, I used the ’early update’ strategy;
the weight vectors were updated using stochastic
gradient descent, as soon as the gold decision (and
state) falls off the beam.
Table 1 outlines the results of global beam search
for the arc standard transition system. We com-
pare the performance of structured SVM (with loss
augmentation, learning rate = 0.1) and averaged
perceptron. The results confirm our hypothesis
that increasing the beam size leads to higher ac-
curacy scores. However, it also increases the com-
putation time significantly. We are able to achieve
a maximum UAS of 80.45 using averaged percep-
tron with beam size 7, trained over 5 epochs.

2.3 Part 3: Extension

As part of the extension, I implemented two
additional transition based dependency parsers,
namely Arc-Eager and Arc-Hybrid systems.

Table 1: UAS scores for global beam search for
the arc standard model. The best result is obtained
by using averaged perceptron with beam size = 7,
trained over 5 epochs.

beam size (k)
epochs k = 3 k = 5 k = 7

Structured
SVM

1 76.49 77.06 76.68
3 77.73 77.8 79.08
5 78.61 79.37 79.05

Averaged
perceptron

1 78.56 78.98 79.26
3 79.38 80.22 80.3
5 80.14 80.19 80.45

2.3.1 Arc Eager Transition System

In the arc standard transition system, the oracle
waits for a particular word to obtain all its child
dependencies, before assigning it a parent word
through right arc. This is necessary as the transi-
tions in the arc standard system remove the depen-
dent word from the stack as soon as it is attached
to a parent. On the contrary, the arc eager transi-
tion system adds a right dependency arc as soon
as possible, without removing the dependent word
from consideration in future states. Instead, it in-
troduces a separate reduce operator, that pops the
topmost element from the stack.
Figure 2 outlines the transitions used by the arc ea-
ger oracle to obtain gold decisions. This transition
strategy is sound and complete for projective trees.
However, for non-projective trees, there may be
states where it is not possible to apply any of these
operators, while restricting to gold dependencies.
In such scenarios, we enforce an incorrect Reduce
operation. Before performing the reduce opera-
tion, we check if the element to be removed has
a parent dependency. If such a dependency does
not exist, we assign a dependency arc from its left
neighbor to the given word.

Figure 2: Transitions for the arc eager transition
system. This figure is borrowed from (Goldberg
and Nivre, 2012)



2.3.2 Arc Hybrid Transition System
The arc-hybrid transition system combines the
left-arc operator of the arc eager system, and the
right-arc operator of the arc standard system. This
effectively removes the need for an extra reduce
operator. Figure 3 gives an overview of the transi-
tions in the arc hybrid system.

Figure 3: Transitions for the arc hybrid transi-
tion system. This figure is borrowed from (Qi and
Manning, 2017)

Similar to arc eager, the transition system is
sound and complete for projective trees. For non-
projective trees, we forcibly enforce a right arc
whenever the oracle is unable to add a gold de-
pendency,

2.3.3 Training and Evaluation
Similar to arc standard, we train the arc eager
and arc hybrid transition system over the gold
state-decision pairs. We train an averaged per-
ceptron model, with greedy parsing. Figure 4
shows the performance of the different transition
system on the dev set, across different epochs.
As we can see, both the arc eager and arc hybrid
transition systems show significant improvement
over the arc standard model. This suggests that
top-down approach to building a dependency tree
works better than bottom up approaches (such as
arc-standard). One of the reasons for this could
be that in the arc standard system, the algorithm
has to perform an additional implicit prediction
of whether a given word has already obtained
all its child dependencies. An early addition
of such an incorrect dependency would deprive
all its child words of the right dependency arc.
The arc-eager transition system addresses this
shortcoming by adding dependency arcs as soon
as it encounters them. In our experiments, the
arc-hybrid transition system performs the best,
achieving a UAS score of 82.43 over 5 epochs.
Results over the blind test set is generated using
this model.

An interesting observation from our explo-
rations was that high accuracy values could be
achieved with limited number of training samples.

Figure 4: Performance of the greedy shift reduce
parser for different transition systems.

Figure 5: Performance of the Arc Standard and
Arc Hybrid systems when trained over different
sample sizes.

Figure 5 shows the accuracies of the greedy arc
standard and arc hybrid system when trained with
different number of training examples. As can be
seen, the accuracy gain is very little after training
over 10000 samples, even when the training
sample size is doubled.
Another observation from Figure 4 and 5 is
that the accuracy gain achieved by arc hybrid
transition system over the arc standard transition
system remains nearly constant across epochs and
training sample sizes, between 2.8 � 3.2. This
might suggest that the accuracy gain is entirely
due to the difference in the transitions defined, and
not because of random parameter initializations.
However, it would be helpful to get further insight
into this.

References

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing.



Peng Qi and Christopher D Manning. 2017. Arc-swift:
A novel transition system for dependency parsing.
arXiv preprint arXiv:1705.04434.


