CS388: Natural Language Processing

Lecture 11:
Understanding In-
Context Learning

Greg Durrett



Administrivia
> Project 3 released Thursday
> Project proposals due Thursday
> Can be >1 page if needed

» Most important: have a detailed plan for models, datasets, and
experiments, so we can evaluate for feasibility. Include related work!

> For reproduction: lots of types of papers are okay, just make sure the
paper isn’t trivial. You can plan for a reproduction with minor extension
beyond what was done before



Recap: Dataset Bias

“Tough” datasets for tasks like QA may feature spurious correlations
(e.g., “where” question is always a location and the model can guess a
relevant location and do quite well)

> Training strong models such as BERT on these datasets leads to poor

generalization

one-hot label vector log probability

l / of each label

L(0g) = —(1— Py C)) ). Jog pg
/

probability under a copy of the model trained
for a few epochs on a small subset of data (bad model)

> One debiasing technique:



This Lecture

> Prompting: best practices and why it works
> Zero-shot prompting: role of the prompt

~ Few-shot prompting (in-context learning): characterizing demonstrations

> Understanding in-context learning
> ICL can learn linear regression

> Induction heads and mechanistic interpretability



Zero-shot Prompting



Zero-shot Prompting

> Single unlabeled datapoint x, want to predict label y

X = The movie’s acting could’ve been better, but the visuals and directing were top-notch.

> Wrap x in a template we call a verbalizer v

Review: The movie’s acting could’ve been better, but the visuals and

directing were top-notch.
Out of positive, negative, or neutral, this review is

neutral



Zero-shot Prompting

> Single unlabeled datapoint x, want to predict label y

X = The movie’s acting could’ve been better, but the visuals and directing were top-notch.

> Wrap x in a template we call a verbalizer v

Review: The movie’s acting could’ve been better, but the visuals and

directing were top-notch.
On a 1 to 4 star scale, the reviewer would probably give this movie

3 stars.



Ways to do classification

> Generate from the model and read off the generation

> What if you ask for a star rating and it doesn’t give you a number of stars
but just says something else?

7)

» Compare probs: “Out of positive, negative, or neutral, this review is
Compare P(positive | context), P(neutral | context), P(negative | context)

> This constrains the model to only output a valid answer, and you can
normalize these probabilities to get a distribution



Ways to do classification

(x, v)=(“A three-hour cinema master class.”, “It was great.”)

Input Output
P(y|x) . .

A three-hour cinema master class. It was great.

LM
P(x|y)P(y) « P(x|y)

It was great. A three-hour cinema master class.

> Can also compute probabilities of examples given labels
(“noisy channel” method)

Min et al. (2021)



Variability in Prompts

> Plot: large number of
prompts produced by
{manual writing,
paraphrasing,
backtranslation}

Accuracy

> X-axis: perplexity of the
prompt. How natural is it?
How much does it appear in
the pre-training data?

> y-axis: task performance

0.7 -

0.6 -

O
Ul

S
A
]

0.3 -

In which section of the newspaper , 5
would you expect to find this arficle?

What's going on? What's going on? m

8 x 10°

9 x 10°
Perplexity

Gonen et al. (2022)



Variability in Prompts

Task Perplexity-score corr. | Perplexity-acc corr. | Avg Acc Acc 50%
Pearson Spearman | Pearson Spearman
Antonyms — — — —
GLUE Cola -0.04 -0.02 47.7 57.1
Newspop -0.18 66.4 72.9
AG News 57.5 68.7
IMDB 862 910
DBpedia 46.7 55.2
Emotion 16.4 23.0
Tweet Offensive 51.3 55.8

> OPT-175B: average of best 50% of prompts is much better than average

over all prompts

Gonen et al. (2022)



Prompt Optimization

> A number of methods exist for searching over prompts (either using
gradients or black-box optimization)

> Most of these do not lead to dramatically better results than doing some
manual engineering/hill-climbing (and they may be computationally
intensive)

> Nevertheless, the choice of prompt is very important for zero-shot
settings! We will see more next time.

> In two lectures: models that are trained to do better at prompts (RLHF)



Few-shot Prompting



Few-shot Prompting

> Form “training examples” from (x, y) pairs, verbalize them (can be
lighter-weight than zero-shot verbalizer)
 Input to GPT-3: v(x1) v(y1) v(x2) v(y2) ... v(Xtest)
Review: The cinematography was stellar; great movie!
Sentiment (positive or negative): positive
Review: The plot was boring and the visuals were subpar.
Sentiment (positive or negative): negative
Review: The movie’s acting could’ve been better, but the visuals and directing were top-notch.

Sentiment (positive or negative):

positive



What can go wrong?

Review: The movie was great!
Sentiment: positive

Review: | thought the movie was alright; | would've seen it again.
Sentiment: positive

Review: The movie was pretty cool!

Sentiment: positive

Review: Pretty decent movie!

Sentiment: positive

Review: The movie had good enough acting and the visuals were nice.
Sentiment: positive

Review: There wasn't anything the movie could've done better.
Sentiment: positive

Review: Okay movie but could've been better.

Sentiment: .
—EAE T ositive



What can go wrong?

> All one training label — model sees extremely skewed distribution

> What if we take random sets of
training examples? There is
quite a bit of variance on basic
classification tasks

> Note: these results are with
basic GPT-3 and not Instruct-
tuned versions of the model.
This issue has gotten a lot better

90 -

AGNews Accuracy (%)

I
-

Qo
-

~J
-

)
-

o)
-

— GPT-3 175B
- With Calibration
01 4 3 106

Number of Training Examples

Zhao et al. (2021)



What can go wrong?

» \/aries even across Accuracy Across Training Sets and Permutations

permutations of
training examples

> x-axis: different
collections of train
examples.

SST-2 Accuracy (%)
~J
S

v-axis: sentiment 60

accuracy. Boxes

represent results over 00

different permutations 1 2 3 4 5 6 7 8 9 10
of the data Training Set ID

Zhao et al. (2021)



What can go wrong?

» Having unbalanced 1.0
training sets leads to

high “default” > 0.8
probabilities of = 06
N o o V.
positive; that is, if g
we feed in a null Xtest © 0.4
A
> Solution: “calibrate” the 0.2
model by normalizing by 0
that probability of null Xtest PPPP NPPP PNPP PPNP PPPN

%—J
- Leads to higher performance; not necessarily ~ UPalanced

crucial with prompt-tuned models Zhao et al. (2021)



Rethinking Demonstrations

" No Demos Demos w/ gold labels % Demos w/ random labels
~ Surprising result: how Dels
necessary even are the
demonstrations?

> Using random labels
does not substantially
decrease performance??

Direct Channel Direct Channel
fairseq 13B  fairseq 13B GPT-3 GPT-3

Min et al. (2022)



Rethinking Demonstrations

B /5% correct 50% correct 25% correct 0% correct No Demos

I

GPT-] (Classification) MetalCL (Multi-choice) GPT-] (Multi-choice)

> Having even mislabeled demonstrations is much better than having no
demonstrations, indicating that the form of the demonstrations is partially
responsible for in-context learning

Min et al. (2022)



Results: HELM

> S0, how much better is —8— Anthropic-LM v4-s3 (52B)
few-shot compared to ®— BLOOM (1768B)
zero-shot? NaturalQuestions (open-book
0.7
» Each line is a different
M 0.6
| 0.5
> More In-context —
L
examples generally leads %4
to better performance 0.3
0.2

» What do we see here?
0O 1 2 4 8 16

#in-context examples Liang et al. (2022)



IMDB

1.0

0.8

0.6
0.4
0.2

0.0

0 1 2 4 8
#in-context examples

> What trends do these show?

16

0.6

0.4

EM

0.2

0.0

0

Results: HELM

CivilComments

7
I

S

TOpp

1 2 4 8 16
#in-context examples

Liang et al. (2022)



Results: BIG-bench

Performance on JSON tasks Performance on BIG-bench Lite
16
14
IR
O
— 10
@
oo 8
O
O 6
O
Fes) 4
-
O 2
)
= 107 108  10° 101 10Y 107 108  10° 101° 10%
(.D. (b) Effective parameter count (C) Effective parameter count
I —¢— BIG-G (0-shot) -»-- BIG-G sparse (0) -o-- GPT (0) % - PalLM (0) - == Best rater
9 —4— BIG-G (1-shot) -x-- BIG-G sparse (1) -o-- GPT (1) %+ PalLM (1) Average rater
() —— BIG-G (2-shot) -x-- BIG-G sparse (2) -o-- GPT (2) % PalLM (2) .
—4+— BIG-G (3-shot)  -=- BIG-G sparse (3) -e- GPT (3) Sr|VaStava Et al' (2022)




Understanding ICL: Regression



Linear Regression

Vn
X1 VY1 X2 Y2 X3 V3 Xn

> Input space is of the form [y, x|, with the “unused” components set to O

> See if we can learn regression: given (x, y) pairs, learn a linear predictor
f(x) = wTx. That is, ground truth is a linear function (synthetic task)

> Equivalent to minimizing the following loss:

> L(w®i,y;) + M|wlf3

minimized by: w* = (X' X + )" 'X 'y )
Akyurek et al. (2022)



Linear Regression

Vn
X1 VY1 X2 Y2 X3 V3 Xn

> Question 1: can a Transformer learn to do linear regression?

> |If we train it to do this task on many examples, does it successfully
learn to do “ICL" linear regression on new instances?

> If so, there are several different “algorithms” it might correspond to!

> Question 2: can we inspect what algorithm actually gets implemented?

Akyurek et al. (2022)



Linear Regression

> Most of these proofs (and other papers in this space) rely on Transformers
being able to perform several kinds of operations

mov(H;s,t,1,7,1,7"): selects the entries of the s™ column of H between rows 4 and j, and copies
them into the ™ column (¢ > s) of H between rows i’ and j’, yielding the matrix:

‘ H:z'—l,t |
H:,:t Hi’:j’,s H:,t+l:
| Hj, i |

> How can this be implemented?
What does the attention need to
do?

Akyurek et al. (2022)



Linear Regression

mov(H;s,t,1,7,%,3"): selects the entries of the s™ column of H between rows ¢ and 7, and copies
them into the ¢ column (¢ > s) of H between rows i’ and j’, yielding the matrix:

| H:i—l,t ‘
H:,:t Hi’:j’,s H:,t-{-l:
| H; |

mul(H;a,b,c,(i,7),(,7"), (2", 7")): in each column h of H, interprets the entries between ¢ and
7 as an a X b matrix A,, and the entries between 7’ and j’ as a b X ¢ matrix A,, multiplies these
matrices together, and stores the result between rows 7" and j”, yielding a matrix in which each

column has the form (h.;»_1, A1 Ao, hjn.|

>~ Several more operations as well

Akyurek et al. (2022)



Linear Regression

Theorem 1. A transformer can compute Eq. (11) (i.e. the prediction resulting from single step of
gradient descent on an in-context example) with constant number of layers and O(d) hidden space,
where d is the problem dimension of the input x. Specifically, there exist transformer parameters 0
such that, given an input matrix of the form:

0 Y; 0

(0) _ .
H™ = x; 0 =z, _ :

(12)

the transformer’s output matrix H\L) contains an entry equal to w'" x,, (Eq. (11)) at the column
index where x,, is input.

>~ Also another update possible based on rank-one updates (Sherman-
Morrison)

Akyurek et al. (2022)



Proof of Theorem

The operations for 1-step SGD with single exemplar can be expressed as following chain (please see
proofs for the Transformer implementation of these operations (Lemma 1) in Appendix C):

* mov(;1,0,(1,1+4+4d),(1,1+d)) (move x)
. f(,(l 1+d),(),1+d,2+d),W, =w) (w' x)
e aff(;(1+d,2+4d),(0,1),(2+d,3+d),W, =1, Wy =—1I) (w'z — )
e mul(;d,1,1,(1,1+d),(2+d,3+4d),(3+d,3 + 2d)) (z(w'z —y))
o aff(;(),(),(3+2d,3+ 3d),b =w,) (write w)
o aff(;(3+d,3+2d),(3+2d,3+3d),(3+3d,34+4d),W; =1,Wy, = =) (z(w 'z —y) — \w)
o aff(;(3+ 2d,3+ 3d),(3+3d,3+4d),(3+2d,3 + 3d),W; =1,Wy = —2a,) (w’)
e mov(;2, (3+2d 3+ 3d),(3+2d,3 + 3d)) (move w’)
e mul(;1,d,1, (3 +2d,3 +3d),(1,1 + d), (3 + 3d,4 + 3d)) (w' ' z2)

Akyurek et al. (2022)



Linear Regression

>~ Squared prediction difference: L2 between different predictors

> When no noise: ICL matches ordinary least square (OLS) almost exactly

R e (OLS, ICL)

0.8 \ (Ridge(0.1), ICL)
e (GD(0.01), ICL)
—  (SGD(0.01), ICL)

\ ——  (GD(0.02), ICL)

>
o)
-

(SGD(0.03), ICL)
(OLS. Y)
(KNN(3, weighted), ICL
(KNN(3. uniform). ICL)
ma (OLS, Y)
= = (Ridge(0.1), Y)
=w=: (ICL, Y)

1/d SPD(A}, A>)
=
/
4
\
™

—
b

0.0

#exemplars



Linear Regression

>~ Squared prediction difference: L2 between different predictors

0.4 —
—— (OLS, ICL)
(Ridge(0.1), ICL)
"~ 0.3 — — B —— e = (Ridge(0.5), ICL)
< (KNN(3, weighted), ICL)
- ____———"""'—-—______ -
iy (KNN(3, uniform), ICL)
3 0.2 —_— . = (SGD(0.03), ICL)
E —— (GD(0.02), ICL)
N , —— (SGD(0.01), ICL)
s 0.1 /\ —— (GD(0.01), ICL)
‘__—___————____—_—_-—_\
0.0 _ ——— ==
20 21 22 23 24 2 27 29

L (depth) H (hidden size)

> What gets learned changes with depth. Low-depth: more like GD. Medium-
depth: more like ridge. High-depth: OLS



Bayesian Interpretation

1. Pretraining documents
are conditioned on a
latent concept (e.g.,
biographical text)

Albert Einstein was a German theoretical physicist, widely
acknowledged to be one of the greatest physicists of all time.
Einstein is best known for developing the theory of relativity, but
he also ....

Concept
(e.g., wiki bio)

Input (x) Output (y) Delimiter

2. Create independent Albert Einstein was German \n
examples from a shared /
concept. If we focus on full

names, wiki bios tend to Concept _ |
relate them to nationalities. (e.g., wiki bio) / —> Mahatma Gandhi was Indian  \n
\ ..brilliant?
. . R
Marie Curie was bolich?

3. Concatenate examples into a prompt and predict next word(s). Language model (LM) implicitly
infers the shared concept across examples despite the unnatural concatenation

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curie was = —p  Polish

Xie et al. (2021)



Understanding ICL: Induction Heads
and Mechanistic Interpretability



Background: Transformer Circuits

> There are mechanisms in Transformers to do “fuzzy” or “nearest
neighbor” versions of pattern completion, completing [A*][B*] ... [A] =
[B] , where A* = A and B* = B are similar in some space

\

Olsson et al. want to establish that these mechanisms are responsible
for good ICL capabilities

> We can find these heads and see that performance improves; can we
causally link these?

Olsson et al. (2022)



Induction Heads

> Induction heads: a pair of attention heads in different layers that work
together to copy or complete patterns.

> The first head copies information from the previous token into each token.

> Second attention head to attend to tokens based on what happened
before them, rather than their own content. Likely to “look back” and
copy next token from earlier

> The two heads working together cause the sequence ...[A][B]...[A] to be mor:
likely to be completed with [B].

Rand Repeat of Random lToken

Category 40 ids node Strtiction Category 40 ids struction

prefix of attended-to-token Attended-to-token is copied. Th
irrent Lok Iogit s increased for tl ‘



per example.

Step 1: Run each model / snapshot over token
token
token
Step 2: For each sample, extract the
loss of a consistent token. Combine

the same set of multiple dataset

examples, collecting one token's loss

these to make a vector of losses per (lloss], [loss], loss), .
model / snapshot.

(loss, loss|, loss), ...)

Step 3: The vectors are jointly reduced
with principal component analysis to
project them into a shared 2D space.

v > Can cluster models based
> Characterize performance by ICL score: on losses over time

loss(500th token) - loss(50th token) — average
measure of how much better the model is
doing later once it’s seen more of the pattern Olsson et al. (2022)



Induction Heads

ONE LAYER
(ATTENTION-ONLY)

ONE LAYER TWO LAYER
(ATTENTION-ONLY) (ATTENTION-ONLY)

:
‘- -
—

One-layer model Models with more than one layer One-layer model
has no sudden improvement. have a sudden improvement in in-c

has no induction heads.

TWO LAYER
(ATTENTION-ONLY)

Fla

Models with more than one layer
have induction heads form during |

>~ Improvement in ICL (loss score) correlates with emergence of induction heads



Induction Heads

Change architecture to promote induction
heads => phase change happens earlier

phase change occurs earlier

phase change than in baseline



Induction Heads

U.0U - — — e

0.05 1 i

0.70 7

U. 19 -
one-layer model models with more than one layer
no change have a phase change

> |f you remove induction heads, behavior changes dramatically




Interpretability

> Lots of explanations for why ICL works — but these haven’t led to many
changes in how Transformers are built or scaled

> Several avenues of inquiry: theoretical results (capability of these
models), mechanistic interpretability, fully empirical (more like that next
time)

> Many of these comparisons focus on GPT-3 and may not always
generalize to other models



Takeaways

> Zero- and few-shot prompting are very powerful ways of specifying new
tasks at inference time

> For zero-shot: form of the prompt matters, we’ll see more example next
times when we look at chain-of-thought

> For few-shot: number and order of the examples matters, prompt
matters a bit less

> Several analyses of why it works: it can learn to do regression and we
know a bit about mechanisms that may be responsible for it



