CS388: Natural Language Processing

Lecture 13: Instruction Tuning, RLHF, Dialog

Greg Durrett
Announcements

- Project 3 out now
 - We highly recommend Colab
 - You don’t need all training iterations
 - You can decrease the frequency of checkpointing
- Project 2 back soon
- Final project proposals back soon
Recap: Chain-of-thought

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context: Christopher agrees with Kevin. [...] Q: Who hangs out with a student? Mary, because Mary hangs out with Danielle and Danielle is a student.</td>
<td></td>
</tr>
<tr>
<td>Train Ex</td>
<td></td>
</tr>
<tr>
<td>Train Ex</td>
<td></td>
</tr>
<tr>
<td>Test Input</td>
<td>Context: Adam plays with Ellen. [...] Q: Who plays with a doctor?</td>
</tr>
<tr>
<td>Output</td>
<td>Adam, because Adam plays with Ellen and Ellen is a doctor. greedy decoding from GPT-3</td>
</tr>
</tbody>
</table>
Recap: Chain-of-thought

- Can help substantially on mathematical reasoning
- Some work to optimize the specifics of the prompts and the examples

Input:

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.

...

Q: John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. How many hours a week does he spend taking care of dogs?
A:

Model output:

John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. So that is $10 \times 0.5 = 5$ hours a day. 5 hours a day $\times 7$ days a week $= 35$ hours a week. The answer is 35 hours a week. ✔️

Wei et al. (2022)
Today

- Instruction tuning
- RLHF
- Chatbots
- Task-oriented dialogue systems
Instruction Tuning
Instruction Tuning

- We want to optimize models for $P(\text{answer} \mid \text{prompt, input})$, but they’re learned on a basic language modeling objective.

- One solution: treat the basic language modeling as pre-training, then fine-tune them on what we care about.

- Two versions of this:
 - **Instruction tuning**: supervised fine-tuning on data derived from many NLP tasks.
 - **Reinforcement learning from human feedback (RLHF)**: RL to improve human judgments of how good the outputs are.
Task Generalization: T0

- T0: tries to deliver on the goal of T5 and do many tasks with one model
- **Crowdsourced prompts:** instructions for how to do the tasks

- **Summarization:**
 The picture appeared on the wall of a Poundland store on Whymark Avenue [...] How would you rephrase that in a few words?

- **Paraphrase identification:**
 "How is air traffic controlled?" "How do you become an air traffic controller?"
 Pick one: these questions are duplicates or not duplicates.

- **Question answering:**
 I know that the answer to "What team did the Panthers defeat?" is in "The Panthers finished the regular season [...]". Can you tell me what it is?

Sanh et al. (2021)
Task Generalization

- Pre-train: T5 task
- Train: a collection of tasks with prompts. This uses existing labeled training data
- Test: a new task specified only by a new prompt. No training data in this task

Sanh et al. (2021)
Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model fine-tuned on many tasks after pre-training

Instruction finetuning

Please answer the following question.
What is the boiling point of Nitrogen?

Chain-of-thought finetuning

Answer the following question by reasoning step-by-step.
The cafeteria had 23 apples. If they used 20 for lunch and bought 6 more, how many apples do they have?

The cafeteria had 23 apples originally. They used 20 to make lunch. So they had $23 - 20 = 3$. They bought 6 more apples, so they have $3 + 6 = 9$.

Multi-task instruction finetuning (1.8K tasks)
Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model

MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

- **Conceptual Physics**
 - When you drop a ball from rest it accelerates downward at 9.8 m/s². If you instead throw it downward assuming no air resistance its acceleration immediately after leaving your hand is
 - (A) 9.8 m/s² ✔
 - (B) more than 9.8 m/s² ✗
 - (C) less than 9.8 m/s² ✗
 - (D) Cannot say unless the speed of throw is given. ✗

- **College Mathematics**
 - In the complex z-plane, the set of points satisfying the equation $z^2 = |z|^2$ is a
 - (A) pair of points ✗
 - (B) circle ✗
 - (C) half-line ✗
 - (D) line ✔

Figure 4: Examples from the Conceptual Physics and College Mathematics STEM tasks.

Chung et al. (2022)
Frontiers

- Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model
- MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

<table>
<thead>
<tr>
<th>Date</th>
<th>Model</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2020</td>
<td>GPT-3 5-shot</td>
<td>43.9</td>
</tr>
<tr>
<td>Mar. 2022</td>
<td>Chinchilla 5-shot</td>
<td>67.6</td>
</tr>
<tr>
<td>Apr. 2022</td>
<td>PaLM 5-shot</td>
<td>69.3</td>
</tr>
<tr>
<td>Oct. 2022</td>
<td>Flan-PaLM 5-shot</td>
<td>72.2</td>
</tr>
<tr>
<td></td>
<td>Flan-PaLM 5-shot: CoT + SC</td>
<td>75.2</td>
</tr>
<tr>
<td>-</td>
<td>Average human expert</td>
<td>89.8</td>
</tr>
</tbody>
</table>

Chung et al. (2022)
<table>
<thead>
<tr>
<th>Model</th>
<th>Finetuning Mixtures</th>
<th>Tasks</th>
<th>Norm. avg.</th>
<th>MMLU</th>
<th>BBH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct</td>
<td>CoT</td>
</tr>
<tr>
<td>540B</td>
<td>None (no finetuning)</td>
<td>0</td>
<td>49.1</td>
<td>71.3</td>
<td>62.9</td>
</tr>
<tr>
<td></td>
<td>CoT</td>
<td>9</td>
<td>52.6 (+3.5)</td>
<td>68.8</td>
<td>64.8</td>
</tr>
<tr>
<td></td>
<td>CoT, Muffin</td>
<td>89</td>
<td>57.0 (+7.9)</td>
<td>71.8</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>CoT, Muffin, T0-SF</td>
<td>282</td>
<td>57.5 (+8.4)</td>
<td>72.9</td>
<td>68.2</td>
</tr>
<tr>
<td></td>
<td>CoT, Muffin, T0-SF, NIV2</td>
<td>1,836</td>
<td>58.5 (+9.4)</td>
<td>73.2</td>
<td>68.1</td>
</tr>
</tbody>
</table>

- Human performance estimates are ~80 on Big-Bench (BBH)
Flan-T5

- Flan-T5: T5-11B model given the “Flan treatment”, instruction tuned on many tasks
- Best model at the ~10B scale for few-shot prompting, also very good choice for fine-tuning

<table>
<thead>
<tr>
<th>Params</th>
<th>Model</th>
<th>Norm. avg.</th>
<th>MMLU Direct</th>
<th>MMLU CoT</th>
<th>BBH Direct</th>
<th>BBH CoT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11B</td>
<td>T5-XXL</td>
<td>-2.9</td>
<td>25.9</td>
<td>18.7</td>
<td>29.5</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>Flan-T5-XXL</td>
<td>23.7 (+26.6)</td>
<td>55.1</td>
<td>48.6</td>
<td>45.3</td>
<td>41.4</td>
</tr>
</tbody>
</table>

(about 20% behind the 540B Flan-PaLM)

- If you have the resources, Flan-T5 is something you can explore in your project/research!

Chung et al. (2022)
Reinforcement Learning from Human Feedback (RLHF)
Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

RLHF

- Apply this approach to optimizing outputs from large language models
- Step 3 (not shown): do RL with this policy

Ouyang et al. (2022)
RLHF

• Humans produce comparisons of two trajectories (= outputs from systems) — different from standard reward in RL

• Fit the reward function r using supervised estimation:

$$
\hat{P}[\sigma^1 \succ \sigma^2] = \frac{\exp \sum \hat{r}(o_t^1, a_t^1)}{\exp \sum \hat{r}(o_t^1, a_t^1) + \exp \sum \hat{r}(o_t^2, a_t^2)}.
$$

• This turns scores into log probabilities of 1 being preferred to 2. Same as logistic regression where we classify pairs as $1 > 2$ or $2 < 1$, but we actually learn a continuous scoring function, not a classifier

• The rest of the RL setup is TRPO/PPO, fairly standard frameworks (note: they typically constrain the policy to not deviate too far from a basic supervised policy)

Christian et al. (2017)
For OpenAI, RLHF data is collected from their API. Very different from instruct-tuning datasets

Ouyang et al. (2022)
text-davinci-003

- text-davinci-001/002 were both learned only from fine-tuning on demonstrations rated 7/7 (i.e., not using RLHF)

- text-davinci-003 (latest version) and ChatGPT both use PPO with learned reward models

- Conclusion: likely difficult to get PPO working reliably (or to get a good reward function — signal from annotators may be unstable)
 - ...but RLHF datasets from OpenAI are not public

- Data quality is paramount! Anecdotally there are lots of human-written demonstrations in there and lots of ratings

https://beta.openai.com/docs/model-index-for-researchers
Pre-trained Chatbots
What are chatbots?

- Like story generation in that it’s open-ended, but involves dialogue with a user

- Input: a conversation history of utterances, plus something the user (a person) just said. Output: the model’s response to that

- Needs to generate interesting and diverse content, but also needs to be able to answer questions and carry on a conversation
Can we just train seq2seq models to “translate” from utterance to response?

Hard to evaluate with automatic metrics:

<table>
<thead>
<tr>
<th>System</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANDOM</td>
<td>0.33</td>
</tr>
<tr>
<td>MT</td>
<td>3.21</td>
</tr>
<tr>
<td>HUMAN</td>
<td>6.08</td>
</tr>
</tbody>
</table>
Lack of Diversity

- Training to maximize likelihood gives a system that prefers common responses:

<table>
<thead>
<tr>
<th>Input: What are you doing?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.86 I don’t know.</td>
<td>-1.09 Get out of here.</td>
</tr>
<tr>
<td>-1.03 I don’t know!</td>
<td>-1.09 I’m going home.</td>
</tr>
<tr>
<td>-1.06 Nothing.</td>
<td>-1.09 Oh my god!</td>
</tr>
<tr>
<td>-1.09 Get out of the way.</td>
<td>-1.10 I’m talking to you.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input: what is your name?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.91 I don’t know.</td>
<td>...</td>
</tr>
<tr>
<td>-0.92 I don’t know!</td>
<td>-1.55 My name is Robert.</td>
</tr>
<tr>
<td>-0.92 I don’t know, sir.</td>
<td>-1.58 My name is John.</td>
</tr>
<tr>
<td>-0.97 Oh, my god!</td>
<td>-1.59 My name’s John.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input: How old are you?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.79 I don’t know.</td>
<td>...</td>
</tr>
<tr>
<td>-1.06 I’m fine.</td>
<td>-1.64 Twenty-five.</td>
</tr>
<tr>
<td>-1.17 I’m all right.</td>
<td>-1.66 Five.</td>
</tr>
<tr>
<td>-1.17 I’m not sure.</td>
<td>-1.71 Eight.</td>
</tr>
</tbody>
</table>

Li et al. (2016)
PersonaChat

<table>
<thead>
<tr>
<th>Persona 1</th>
<th>Persona 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I like to ski</td>
<td>I am an artist</td>
</tr>
<tr>
<td>My wife does not like me anymore</td>
<td>I have four children</td>
</tr>
<tr>
<td>I have went to Mexico 4 times this year</td>
<td>I recently got a cat</td>
</tr>
<tr>
<td>I hate Mexican food</td>
<td>I enjoy walking for exercise</td>
</tr>
<tr>
<td>I like to eat cheetos</td>
<td>I love watching Game of Thrones</td>
</tr>
</tbody>
</table>

[PERSON 1:] Hi
[PERSON 2:] Hello! How are you today?
[PERSON 1:] I am good thank you, how are you.
[PERSON 2:] Great, thanks! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!

- Efforts to imbue seq2seq models with “personality”
- These systems still don’t work great. What else is needed?
Pre-trained Chatbots

- Initialize the parameters of this model with a pre-trained model, then fine-tune it on some data

- It turns out that scaling up dramatically and strategies like nucleus sampling can help with the “I don’t know” problem
Blender

- 2.7B-param model, also a 9.4B-parameter seq2seq model variant
- “Poly-encoder” Transformer architecture, some training tricks
- Three models: retrieve (from training data), generate, retrieve-and-refine
- Fine-tuning on three prior datasets: PersonaChat, Empathetic Dialogues (discuss personal situation, listener is empathetic), Wizard of Wikipedia (discuss something from Wikipedia)

Roller et al. (2020)
Will you sing me a song?

Sure, what do you want to be sung to? I can sing you a song about baking.

Yes, sing me a song about baking!

Do you want me to sing it to the tune of "Sing Along with Mitch"?

Yes, I would love that.

Ok, I'll try to get it to you by the end of the day. What else do you like to do?

Can you at least tell me what the lyrics are?

Sure, it goes like this: "Baking is my favorite thing to do in the world."

How does the chorus go?

It goes: BAKING IS MY FAVORITE THING TO DO IN THE WORLD!
I'm from the midwest, but I live in the south now. How about you?

Born and raised in the south

What part of the south? I was born in Georgia, but raised in Tennessee
Why did the mushroom go to the party?

I'm not sure, but I'm glad it did. I love museums. What do you do for a living?

No, it was supposed to be a joke.

Oh, sorry. I didn't get it. What kind of joke was it? I like jokes.

The answer is, "because he's a fun guy." Do you get it?

No, I don't. Can you explain it to me like I'm a five year old?

Yes. Mushrooms are fungi, and "fungi" is pronounced like "fun guy"

Oh, okay. I get it now. Thank you for the explanation. I really appreciate it.

Are you sure you understand? Can you explain it to me?

Sure. It's a play on the word fungus, which is also pronounced fun guy.
Blender

- Inconsistent responses: this model doesn’t **really** have anything to say about itself
- Holding a conversation != AI
 - Can’t acquire new information
 - Did it learn “fun guy”? No, it doesn’t understand phonology. It probably had this in the data somewhere
Chatbots

- What happens when these models get really good at fooling people? Google LaMDA model (similar to Blender):
ChatGPT

- Big model with RLHF. (More like a QA system than these other chatbots)

- Not much we can say except:

 - It’s based on the earlier davinci models

 - Lots of data collection to fencepost it (e.g., “I don’t know anything about the current weather …”)

 - Continuously improved without detailed release notes (e.g., they made it better at math)
Task-Oriented Dialogue
Task-Oriented Dialogue

‣ How do you build conversational systems to do things?

Siri, find me a good sushi restaurant in Chelsea

Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google

How expensive is it?

Entrees are around $30 each

Find me something cheaper
Hey Alexa, why isn’t my Amazon order here?

Let me retrieve your order. Your order was scheduled to arrive at 4pm today.

It never came

Okay, I can put you through to customer service.
Task-Oriented Dialogue

- Parsing / language understanding is just one piece of a system

- Dialogue state: reflects any information about the conversation (e.g., search history)

- User utterance -> update dialogue state -> take action (e.g., query the restaurant database) -> say something

- How do we represent the information from the user’s utterance?

Young et al. (2013)
• Intent and slots model: classify an intent (**Airfare**), then fill several slots needed to specify the parameters for that intent

<table>
<thead>
<tr>
<th>Utterance</th>
<th>How much is the cheapest flight from Boston to New York tomorrow morning?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal:</td>
<td>Airfare</td>
</tr>
<tr>
<td>Cost.Relative</td>
<td>cheapest</td>
</tr>
<tr>
<td>Depart.City</td>
<td>Boston</td>
</tr>
<tr>
<td>Arrival.City</td>
<td>New York</td>
</tr>
<tr>
<td>Depart.Date.Relative</td>
<td>tomorrow</td>
</tr>
<tr>
<td>Depart.Time.Period</td>
<td>morning</td>
</tr>
</tbody>
</table>

• This is how most Alexa skills work. Can match with rule-based systems or use classifiers

DARPA (early 1990s), Figure from Tur et al. (2010)
Intents

- 29 different intents in ATIS:

 which flights go from cleveland to indianapolis on april fifth

 Intent: flight

 does tacoma airport offer transportation from the airport to the downtown area

 Intent: ground_service

 what days of the week do flights from san jose to nashville fly on

 Intent: day_name

 what meals are served on american flight 811 from tampa to milwaukee

 Intent: meal
Dataflow Graphs

- How do we scale to more complex dialog scenarios? One proposal: dataflow graphs

(1)

User: *Where is my meeting at 2 this afternoon?*

```
place(findEvent(EventSpec(start=pm(2))))
```

Agent: *It’s in Conference Room D.*
Dataflow Graphs

User: Can you create a meeting with Megan right before that starts?

createEvent(EventSpec(
 end=start(refer(Constraint[Event]())),
 attendee=PersonSpec(name='Megan')
))

Agent: Which person named Megan did you mean?
Find me a good sushi restaurant in Chelsea

Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google

How expensive is it?

Entrees are around $30 each
Find me a good sushi restaurant in Chelsea

restaurant_type <- sushi
location <- Chelsea
curr_result <- execute_search()

Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google

How expensive is it?

get_value(cost, curr_result)

Entrees are around $30 each
Training Dialog Systems

- “Wizard of Oz”: can run the dialog system in a real setting and have a human decide what it should do next
- Learning from demonstrations: the system can learn from what the wizard does and do that in the future

Find me a good sushi restaurant in Chelsea

```
restaurant_type <- sushi
location <- Chelsea
curr_result <- execute_search()
```

Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google

Semantic Machines; Andreas et al. (2020)
Task-Oriented Dialogue

- Building these systems takes a ton of engineering, like Gunrock — it typically **doesn’t** use pre-trained models (until 2023...)
 - Need to know what the system should **do**, not just what it should say
 - Generation is usually templated (handwritten), otherwise the system can behave unexpectedly
- Lots of industry activity in this space, less in academia (hard to maintain all of the moving parts for a real dialog system)
- Current interest: work like Toolformer / Langchain that allows LLMs to generate the API calls directly
Takeaways

‣ Instruction-tuning and RLHF are two procedures that take LMs to the next level — these models work dramatically better than basic GPT-3

‣ These are the foundation of modern chatbots (along with lots of pre-training data), very exciting capabilities in these LLM agents

‣ Task-oriented dialog has historically been different but is starting to unify with chatbots (Bing agent has ability to make API calls)