CS388: Natural Language Processing

Lecture 13: Instruction Tuning, RLHF, Dialog

Announcements Project 3 out now We highly recommend Colab You don't need all training iterations You can decrease the frequency of checkpointing Project 2 back soon Final project proposals back soon

Instruction Tuning

- We want to optimize models for P(answer | prompt, input), but they're learned on a basic language modeling objective
- One solution: treat the basic language modeling as pre-training, then fine-tune them on what we care about
- Two versions of this:
 - Instruction tuning: supervised fine-tuning on data derived from many NLP tasks
 - Reinforcement learning from human feedback (RLHF): RL to improve human judgments of how good the outputs are

	Frontiers	
Flan-F	PaLM (October 20, 2022): 1800 tasks, 540B parameter model	
Conceptual Conceptual	J task (Hendrycks et al., 2020): 57 high school/college/profession When you drop a ball from rest it accelerates downward at 9.8 m/s ² . If you instead thre downward assuming no air resistance its acceleration immediately after leaving your b (A) 9.8 m/s ² (B) more than 9.8 m/s ² (C) less than 9.8 m/s ² (D) Cannot say unless the speed of throw is given.	ow it
College Mathematics	In the complex z-plane, the set of points satisfying the equation $z^2 = z ^2$ is a (A) pair of points (B) circle (C) half-line (D) line	×××
	Figure 4: Examples from the Conceptual Physics and College Mathematics STEM t Chu	asks. ung et al. (2022)

Frontiers

- Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model
- MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

-	Random	2 5.0
-	Average human rater	34 .5
May 2020	GPT-3 5-shot	43.9
Mar. 2022	Chinchilla 5-shot	67.6
Apr. 2022	PaLM 5-shot	69.3
- 	Flan-PaLM 5-shot	72.2
Oct. 2022	Flan-PaLM 5-shot: CoT + SC	75.2
-	Average human expert	89.8
	5 I	

				MM	LU	BB	H
Model	Finetuning Mixtures	Tasks	Norm. avg.	Direct	CoT	Direct	Co
5 40B	None (no finetuning)	0	49.1	71.3	62.9	49.1	63.7
	СоТ	9	52.6 (+3.5)	68.8	64.8	50.5	61.1
	CoT, Muffin	89	57.0 (+7.9)	71.8	66.7	56.7	64.0
	CoT, Muffin, T0-SF	282	57.5 (+8.4)	72.9	<u>68.2</u>	57.3	64.0
	CoT, Muffin, T0-SF, NIV2	1,836	58.5 (+9.4)	73.2	68.1	58.8	65.6

Chung et al. (2022)

Flan-T5

- Flan-T5: T5-11B model given the "Flan treatment", instruction tuned on many tasks
- Best model at the ~10B scale for few-shot prompting, also very good choice for fine-tuning

			MMLU		BBH			
Params	Model	Norm. avg.	Direct	СоТ	Direct	CoT		
11B	T5-XXL	-2.9	2 5.9	18.7	29. 5	19.3		
	Flan-T5-XXL	23.7 (+26.6)	55.1	48.6	4 5. 3	41.4		
		(about 20	% behind	d the 5	40B Flan	-PaLM)		
If you have the resources, Flan-T5 is something you can explore in your project/								
research!					Chun	g et al. (2022		

RLHF

- Humans produce comparisons of two trajectories (= outputs from systems) - different from standard reward in RL
- Fit the reward function *r* using supervised estimation:

$$\hat{P}[\sigma^1 \succ \sigma^2] = \frac{\exp\sum \hat{r}(o_t^1, a_t^1)}{\exp\sum \hat{r}(o_t^1, a_t^1) + \exp\sum \hat{r}(o_t^2, a_t^2)}$$

- This turns scores into log probabilities of 1 being preferred to 2. Same as logistic regression where we classify pairs as 1 > 2 or 2 < 1, but we actually learn a continuous scoring function, not a classifier
- The rest of the RL setup is TRPO/PPO, fairly standard frameworks (note: they typically constrain the policy to not deviate too far from a basic supervised policy) Christiano et al. (2017)

Table 1: Distribut case categories fro prompt dataset.		Table 2: Illustrati	HF ive prompts from our API prompt dataset. These nples inspired by real usage—see more examples			
Use-case	(%)	Use-case	Prompt			
Generation Open QA	45.6% 12.4%	Brainstorming	List five ideas for how to regain enthusiasm for my career			
Brainstorming Chat Rewrite	11.2% 8.4% 6.6%	Generation	Write a short story where a bear goes to the beach, makes friends with a seal, and then returns home.			
Summarization Classification	4.2% 3.5%	Rewrite	This is the summary of a Broadway play:			
Other Closed QA	3.5% 2.6%		{summary}			
Extract	1.9%		This is the outline of the commercial for that play:			
For OpenAl	, RLHF data	a is collected fro	om their API. Very different from			
•	instruct-tuning datasets Ouyang et al. (2022)					

•(())،

text-davinci-003

- text-davinci-001/002 were both learned only from fine-tuning on demonstrations rated 7/7 (i.e., not using RLHF)
- text-davinci-003 (latest version) and ChatGPT both use PPO with learned reward models
- Conclusion: likely difficult to get PPO working reliably (or to get a good reward function — signal from annotators may be unstable)
 - ...but RLHF datasets from OpenAI are not public
 - Data quality is paramount! Anecdotally there are lots of human-written demonstrations in there and lots of ratings

https://beta.openai.com/docs/model-index-for-researchers

Pre-trained Chatbots

What are chatbots?

- Like story generation in that it's open-ended, but involves dialogue with a user
- Input: a conversation history of utterances, plus something the user (a person) just said.
 Output: the model's response to that
- Needs to generate interesting and diverse content, but also needs to be able to answer questions and carry on a conversation

• Hard to evaluate with automatic metrics:

System	BLEU
RANDOM	0.33
MT	3.21
HUMAN	6.08

Lack of Diversity Training to maximize likelihood gives a system that prefers common responses: Input: What are you doing? -0.86 I don't know. -1.09 Get out of here. -1.03 I don't know! -1.09 I'm going home. -1.06 Nothing. -1.09 Oh my god! -1.09 Get out of the way. -1.10 I'm talking to you. **Input**: what is your name? -0.91 I don't know. -0.92 I don't know! -1.55 My name is Robert. -1.58 My name is John. -0.92 I don't know, sir. -1.59 My name's John. -0.97 Oh, my god! Input: How old are you? -0.79 I don't know. -1.64 Twenty-five. -1.06 I'm fine. -1.17 I'm all right. -1.66 Five. -1.17 I'm not sure. -1.71 Eight. Li et al. (2016)

	Persona 1 Persona 2							
	I like to ski I am an artist							
	My wife does not like me anymore I have four children							
	I have went to Mexico 4 times this year	I recently got a cat						
	I hate Mexican food	I enjoy walking for exercise						
	I like to eat cheetos	I love watching Game of Thrones						
[PERSON 1:] Hi Zhang et al. (2 [PERSON 2:] Hello ! How are you today ? [PERSON 1:] I am good thank you , how are you. [PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones. [PERSON 1:] Nice ! How old are your children? [PERSON 2:] I have four that range in age from 10 to 21. You? [PERSON 1:] I do not have children at the moment. [PERSON 2:] That just means you get to keep all the popcorn for yourself.								
		keep an me popeon for yoursen.						

These systems still don't work great. What else is needed?

- Initialize the parameters of this model with a pre-trained model, then fine-tune it on some data
- It turns out that scaling up dramatically and strategies like nucleus sampling can help with the "I don't know" problem

Blender

- 2.7B-param model, also a 9.4B-parameter seq2seq model variant
- "Poly-encoder" Transformer architecture, some training tricks
- Three models: retrieve (from training data), generate, retrieve-and-refine
- Fine-tuning on three prior datasets: PersonaChat, Empathetic Dialogues (discuss personal situation, listener is empathetic), Wizard of Wikipedia (discuss something from Wikipedia)

Roller et al. (2020)

- Big model with RLHF. (More like a QA system than these other chatbots)
- Not much we can say except:
 - It's based on the earlier davinci models
 - Lots of data collection to fencepost it (e.g., "I don't know anything about the current weather ...")
 - Continuously improved without detailed release notes (e.g., they made it better at math)

Intent and slots model: classify an intent (Airfare), then fill several slots needed to specify the parameters for that intent

ATIS

Utterance	How much is the cheapest flight from
	Boston to New York tomorrow morning?
Goal:	Airfare
Cost_Relative	cheapest
Depart_City	Boston
Arrival_City	New York
Depart_Date.Relative	tomorrow
Depart_Time.Period	morning

This is how most Alexa skills work. Can match with rule-based systems or use classifiers

DARPA (early 1990s), Figure from Tur et al. (2010)

Task-Oriented Dialog: What the user sees

Find me a good sushi restaurant in Chelsea

Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google

How expensive is it?

Entrees are around \$30 each

Task-Oriented Dialog: Under the hood

Find me a good sushi restaurant in Chelsea

restaurant_type <- sushi</pre>

location <- Chelsea</pre>

curr_result <- execute_search()</pre>

Sushi Seki Chelsea is a sushi restaurant in Chelsea with 4.4 stars on Google

How expensive is it?

get_value(cost, curr_result)
Entrees are around \$30 each

		_	
	150		ð.
6	7.C	100	1%
- 1	184	\star	111
	12	Ľ,	2)
	- 7%,	ALSI	80.

Training Dialog Systems

- "Wizard of Oz": can run the dialog system in a real setting and have a human decide what it should do next
- Learning from demonstrations: the system can learn from what the wizard does and do that in the future

Find me a good sushi restaurant in Chelsea

wizard enters
these
templates
these
templates
treat
these
templates
treat
templates
tre

Task-Oriented Dialogue

- Building these systems takes a ton of engineering, like Gunrock it typically doesn't use pre-trained models (until 2023...)
 - Need to know what the system should do, not just what it should say
 - Generation is usually templated (handwritten), otherwise the system can behave unexpectedly
- Lots of industry activity in this space, less in academia (hard to maintain all of the moving parts for a real dialog system)
- Current interest: work like Toolformer / Langchain that allows LLMs to generate the API calls directly

Takeaways

- Instruction-tuning and RLHF are two procedures that take LMs to the next level — these models work dramatically better than basic GPT-3
- These are the foundation of modern chatbots (along with lots of pre-training data), very exciting capabilities in these LLM agents
- Task-oriented dialog has historically been different but is starting to unify with chatbots (Bing agent has ability to make API calls)