CS388: Natural Language Processing

Lecture 15: HMMs, POS

Greg Durrett



Administrivia

> Project 3 due Thursday



This Lecture

Part-of-speech tagging
Hidden Markov Models, parameter estimation

Viterbi algorithm
POS taggers

NER, CRFs, state-of-the-art in sequence modeling



Where are we in the course?

>~ Next three lectures: structured prediction. Produce representations of
language as sequences and trees

> Language has hierarchical structure:

K\/A‘\/'\ NS XN T

| ate the spaghetti with chopsticks | ate the spaghetti with meatballs

> Understanding syntax fundamentally requires trees — the sentences
have the same shallow analysis. But the first step we’ll take towards
understanding this is understanding parts of speech

NN NNS VBZ NNS VBP NN
Teacher strikes idle kids | record the video | listen to the record



POS Tagging



POS Tagging

Open class (lexical) words

Nouns
Proper Common
IBM cat / cats
Italy Snow

Closed class (functional)

Determiners the some

Conjunctions and or

Pronouns he its

Verbs

Adjectives yellow

Main

see
registered

Adverbs slowly

Auxiliary

can
had

Numbers ... more
122,312

one

Prepositions to with

Particles off up

... More

Slide credit: Dan Klein



POS Tagging

VBD VB VBD VB

VBN VBZ VvBP VBZ VBN VBZ VBP VBZ

NNP NNS NN NNS CD NN NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent Fed raises interest rates 0.5 percent

| hereby
Increase interest
rates 0.5%

’ I’'m 0.5% interested
M in the Fed’s raises!

RAdbess 5 A A0 R R R AR B RN

» Other paths are also plausible but even more semantically weird...

> What governs the correct choice? Word + context
» Word identity: most words have <=2 tags, many have one (percent, the)
» Context: nouns start sentences, nouns follow verbs, etc.



Hidden Markov Models



Hidden Markov Models

PUEX = (21, 5)  OUEPUE y = (31, 1)

> Model the sequence of tags y over words x as a Markov process

>~ Markov property: future is conditionally independent of the past given
the present

@ P(ysly1,y2) = P(ys|y2)

> |f y are tags, this roughly corresponds to assuming that the next tag
only depends on the current tag, not anything before



Hidden Markov Models

> Input x = (21, ...,2,) Outputy = (y1,...,y,) Y€T=setof possible tags
(including STOP);

:t :—+ STOP X € V = vocab of words

P(y P(y1 HP YilYi—1 HP zi|yi)
W—’%f_’w_/ ~ Observation (x) depends

Initial Transition Emission

only on current state
distribution probabilities probabilities y (y)



HMMs: Parameters

PUEX = (21, 5)  OUEPUE y = (31, 1)

mn n

@ @ _> P(Y,X) — P(yl)Hp(yz\yz—ﬂljp(%wz)
QRO D

> |Initial distribution: |T| x 1 vector (distribution over initial states)
> Emission distribution: |T| x |V| matrix (distribution over words per tag)

> Transition distribution: |T| x [T| matrix (distribution over next tags per tag)



HMMs Example

Tags ={N, V, STOP} Vocabulary = {they, can, fish}
Initial Transition Emission
Yi L
N 1.0 N V STOP they can fish
y VO gy N 1/53/5 1/5 yi N 1 0 O

STOP O vV 1/51/5 3/5 V. 0 1/21/2



Transitions in POS Tagging

VBD VR
VBN VBZ VBP VBZ

NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent

- P(y1 = NNP) likely because start of sentence

- P(y2 = VBZ|y1 = NNP) likely because verb often follows noun

» P(ys = NN|y2 = VBZ): direct object can follow verb

> How are these probabilities learned?



Training HMMs

> Transitions
» Count up all pairs (yi, yi+1) in the training data
> Count up occurrences of what tag T can transition to

~ Normalize to get a distribution for P(next tag|T)

> Need to smooth this distribution, won’t discuss here
> Emissions: similar count + normalize scheme, but trickier smoothing!

> You can write down the log likelihood and it is exactly optimized by this
count + normalize scheme, so no need for SGD!



Inference: Viterbi Algorithm



Inference in HMMs

* Input x = (24, ..., x,) Output y = (y1, ..., Yn)

:t : P(y.x <y1>H P(z:ly:)

P(y,x)
v Dy

- Inference problem: argmax, P(y|x) = argmax

> Exponentially many possible y here!

> Solution: dynamic programming (possible because of Markov structurel!)



n—1 n
P(z1,22, " ,Zn,Y1,Y2," " Yn) = P(y1) H P(Yi+1|yi) HP(wz\yz)
i=1 i=1

Y1 glaxy P(yn‘yn—l)P(xn‘yn) ' "P(?/Z‘yl)P(iUz\y2)P(y1)P(x1\yl)

Transition probabilities Emission probabilities Initial probability

slide credit: Vivek Srikumar



P(z1,22," "+ ,Zn,Y1,Y2,"* Yn) = P(y1) H P(yi+1y:) HP(wz‘\yi)

i=1 i=1
1 ;Izlaxy P(yn‘yn—l)P(mn‘yn)"'P(QZ‘yl)P(ﬂb|y2)P(y1)P(x1\yl)
= max P(yalyn1)P(@nlyn) - maxiP(yslys) Plealya) P(yr) P(a1ly1)
Y2577 Yn \ Y1 J . p =
.~ _” \\\ P
\\ ///
&

The only terms that depend on y,

slide credit: Vivek Srikumar



n

n—1
P(z1,22, ,Tn,y1, Y2, Un) = Pn) | | PWisalvs) | | P(ilys)

=1 =1
| max P(Yn|Yn—1)P(Zn|yn) - - - P(y2|y1) P(z2|y2) P(y1) P(z1|y1)
= max P(yn|yn—1)P(znlyn) - - max P(yzlyr) P(z2]y2) P(y1) P(e1y1)
= max P(Yn|Yn—1)P(xn|yn) - - max P(y2|y1)P(z2|yz)score: (y1)

~ Best (partial) score for a sequence
Abstract away the score for all ending in state s

decisions till here into score
scoreq(s) = P(s)P(x1]|s)

° Q e =sde credit: Vivek Srikumar




P(ZEl,CUQ,"' axnaylay27“'yn) — P(yl) H P(yz+l‘yz)HP(xz|yz)

max  P(Yn|Yn—1)P(Tn|yn) - - - P(y2|y1)P(x2|y2) P(y1) P(x1|y1)

Y1,Y2,° " yYn
z2|y2)P(y1) P (x1|y1)

= max P(yn|yn—1)P(zn|yn) - - - max P(ya|y1)P(
Y2, yYUn Y1
:yzma}’; P(yn|yn_1)P($n|yn) "'II?]-Jal'XP(y2‘y1)P($2‘y2)Scorel(yl)
(

= max P(yn|yn-1)P(Tnlyn) - - max P(ys|y2) P(zs|ys) max P( yzLyl (Z2]y2)scorer (y1)
) "I M (\ ’,

~ \

\N \ /
TSV

Only terms that depend ony,

/

slide credit: Vivek Stikumar



n
P(z1,22,  * ,Tn,Y1,Y2, " Yn) = P(y1 prz+1\yz)HP($i\yi)
1=1 1=1

max — P(yn|Yn—1)P(Zn|yn) - -~ P(y2|y1) P(z2|y2) P(y1) P(z1|y1)
) ) "I%?Xp(yz\yl)P(xﬂ?Jz)P( y1)P(z1|y1)
( )P(Znlyn) - - - max Pya[y1) P(z2]yz)score: (y1)
= max P(yn|yn—1)P(@nlyn) - -~ max Pys|y2) P(zs]ys) max P(yz|y1) P(z2yz)score: (y1)
( )P(Zn|yn) )P(z3ys3)

r3|ys3)scores(ys)

--max P(y3|y2) P

. . . 30
Abstract away the score for all decisions till here into score slide credit: Vivek Srikumar



> “Think about” all possible immediate
prior state values. Everything before
that has already been accounted for by
earlier stages.

slide credit: Dan Klein



n—1

\*/ P(z1,T2, -+ ,Zn,Y1,Y2," Yn) = Py zI—Ilp Yi+1|Yi) 7,1:[ (3|y:)
J, max  P(ynlyn—1)P(Tnlyn) - - Ply2(y1) P(z2]y2) P(y1) P(1]y1)
= max P(yn|yn—1)P(@nlyn) - - - max P(ys[y1) P(w2|y2) P(y1) P(1]y1)
=y2rfla§jn PYn|yn—1)P(@nlyn) - - - max P(yz|y1) P(@2]yz )scores (y1)
= m P(Yn|yn—1)P(xn|yn) - - - max P(y3ly2)P(z3|y3) max P(y2|y1)P(z2|y2)score; (y1)
= ygr}lag}n P(yn\yn 1)P(nlyn) - - max P(ys\yz)P(ws\yB)SCOI‘ez(yz)
= II;&X score, (Yn)

. . . L 1
Abstract away the score for all decisions till here into score slide credit: Vivek Srikumar



’:]:

P(w13x27“' s Lny,Y1,Y2,° " Yn ) yl HP yz+1‘yz

P(z;|y;)
1=1 1=1
. max P(Yn|yn—1)P(xn|yn) - - - P(y2|y1) P(x2|y2) P(y1)P(z1|y1)
= max P(yn|yn—1)P(@nlyn) - - - max P(ys[y1) P(z2]y2) P(y1) P(1 |y1)
= max P(yn|yn—1)P(znlyn) - - max P(yz|yr) P(z2|yz)score: (y1)
:ysn-l-a}g(; P(yn|yn—1)P(xn‘yn) maXP(y3‘y2)P($3‘y3) axP(yz\yl) (:1;2|y2)scorel(y1)
= max P(yn|yn—1)P(@n|yn) - - -max P(ys|ys) P(zs]ys)scores (ys)
= max score,, (Yn )
Yn

scoreq(s) = P(s)P(x1]|s)

score;(s) = max P(s|y;— T.|s)score;
Z( ) Yi—1 ( ‘yz 1) ( Z‘ ) i 1(yzslldlg credit: VlvekSr?Igumar



1. Initial: For each state s, calculate
score; (s) = P(s)P(x1|s) = msBy, s

2. Recurrence: Fori=2to n, for every state s, calculate

score;(s) = max P(s|y;—1)P(x;|s)score; —1(yi—1)
Yi—1

— IJI&X Ayz'—l ,SBS,iB?:SC()re’i—l (yi—l)
i—1

3. Final state: calculate T: Initial probabilities

A: Transitions

max P(y, x|m, A, B) = maxscore,(s) B: Emissions

Y S

This only calculates the max. To get final answer (argmax),
* keep track of which state corresponds to the max at each step

* build the answer using these back pointers

slide credit: Vivek Srikumar



POS Taggers



HMM POS Tagging

> Penn Treebank English POS tagging: 44 tags

> Baseline: assign each word its most frequent tag: ~“90% accuracy

> Trigram HMM (states are pairs of tags): ~95% accuracy / 55% on
words not seen in train

» TnT tagger (Brants 1998, tuned HMM): 96.2% acc / 86.0% on unks

> CRF tagger (Toutanova + Manning 2000): 96.9% / 87.0%

» State-of-the-art (BiLSTM-CRFs, BERT): 97.5% / 89%+

Slide credit: Dan Klein



T, NNP NNPS RB RP IN VB VBD VBN VBP Totl

73 o@ 56 0 61 2 5 10 15 108 0 488

NN 244 0 13 0 12 1 1 29 5 6 19 525

NNP 107 106 ©0 1322 5 0 7 S5 1 2 0 427

NNPS 1 0 110 0 0 0 0 0 0 0 0 142

RB 72 21 7 0 0 16 13 1 0 0 0 295

RP © 0 O 0 39 _0 6 0 0 0 0 104

IN 11 0 1 0 169 0 1 0 0 0 323

VB 17 64 9 0 2 0 1 0 4 85 189

VBD 10 5 3 0 0 0 0 3 0 2 166

VBN 101 3 3 0 0 0 0 3 18 0 1 221

VBP 5 34 3 1 1 0 2 4 6 3 0 104

Total 626 536 348 144 317 122 279 102 140 269 108 3651
JJ/NN - NN VBD RP/IN DT NN RB VBD/VBN NNS
official knowledge made up thestory  recently sold shares

(NN NN: tax CUt' art ga”ery’ ) Slide credit: Dan Klein / Toutanova + Manning (2000)



>

>

>

>

Remaining Errors

Lexicon gap (word not seen with that tag in training) 4.5%
Unknown word: 4.5%

Could get right: 16% (many of these involve parsing!)
Difficult linguistics: 20%

VBD / VBP? (past or present?)
They set  up absurd situations, detached from reality

Underspecified / unclear, gold standard inconsistent / wrong: 58%

adjective or verbal participle? JJ / VBN?
a S 10 million fourth-quarter charge against discontinued operations

Manning 2011 “Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Linguistics?”



Other Languages

Language | CRF+ CRF | BTS BTS*
Bulgarian 97.97 97.00 | 97.84 97.02
Czech 08.38 98.00 | 98.50 98.44
Danish 9593 95.06 | 95.52 92.45
German 93.08 91.99 | 92.87 92.34
Greek 07.72 97.21 | 97.39 96.64
English 95.11 94.51 | 93.87 94.00
Spanish 96.08 95.03 | 95.80 95.26
Farsi 96.59 96.25 | 96.82 96.76
Finnish 04.34 92.82 | 9548 96.05
French 96.00 9593 | 95.75 95.17
Indonesian | 92.84 92.71 | 92.85 91.03
[talian 97710 97.61 | 97.56 97.40
Swedish 96.81 96.15 | 95.57 93.17
AVERAGE 95.41 95.06

Oscar Romero was born in El Salvador.

| Gillick et al. 2016

\/

SEGMENT

V

BTS

Vv
SPANS

/\

S0, L13, PER] [S26, L11, LOC]

O S c
I A\ |
Oxc3 O0x93 O0x73 0x63

Voo

>~ Universal POS tagset (~12 tags), cross-lingual model works as well as
tuned CRF using external resources



NER



Named Entity Recognition

B-PER I-PER O O O B-LOC O O OB-ORG O O

Barack Obama will travel to Hangzhou today for the G20 meeting .
PERSON ORG

>~ BIO tagset: begin, inside, outside
> Sequence of tags — should we use an HMM?
> Why might an HMM not do so well here?

> Lots of O’s

> Insufficient features/capacity with multinomials (especially for unks)



HMMs Pros and Cons

> Big advantage: transitions, scoring pairs of adjacent y’s

(D ~@

> Big downside: not able to incorporate useful word context information

> Solution: switch from generative to discriminative model (conditional
random fields) so we can condition on the entire input.

> Conditional random fields: logistic regression + features on pairs of y’s



Conditional Random Fields



Conditional Random Fields

> Flexible discriminative model for tagging tasks that can use arbitrary
features of the input. Similar to logistic regression, but structured

B-PER I-PER

Barack Obama will travel to Hangzhou today for the G20 meeting .

Curr word=Barack & Label=B-PER

Next word=0Obama & Label=B-PER

Curr word starts with capital=True & Label=B-PER
Posn in sentence=1st & Label=B-PER

Label=B-PER & Next-Label = I-PER



Tagging with Logistic Regression

- Logistic regression over each tag individually:  “jifferent features” approach to

P( l ) exp(WTf(y, i, X)ﬁ/ features for a single tag
; — X’ 1] — :
’ ’ Zy’ey eXp(WTf(ylv l, X))

Probability of the ith word getting assigned tag y (B-PER, etc.)




Tagging with Logistic Regression

- Logistic regression over each tag individually:  “jifferent features” approach to

GXP(WTf(y, i, X)ﬁ/ features for a single tag
exp(w ' £(y,i,x))

Py = y|x,1) =
| Zy’ey
> Over all tags:

) - S L o
Ply =ylx) = H P(yi = gilx,1) = - exp (Z WTf(yiaZaX)>
1—=1 1=1

> Score of a prediction: sum of weights dot features over each individual
predicted tag (this is a simple CRF but not the general form)

> Set Z equal to the product of denominators

> Conditional model: x is observed, unlike in HMMs



Example: “Emission Features” f.

B-PER I-PER O O
Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(I-PER, i=2, x) + fo(O, i=3, x) + (O, i=4, x)

[CurrWord=0Obama & label=I-PER, PrevWord=Barack & label=I-PER,

CurrWordlsCapitalized & label=I-PER, ...]

B-PER B-PER O O
Barack Obama will travel

featS — fe(B‘PER, i=1, X) + fe(B‘PER, i=2, X) + fe(o, i=3, X) + fe(o, i=4, X)



Adding Structure

3 1 =
— E CXP (; WTf(g%iaX))

> We want to be able to learn that some tags don’t follow other tags —
want to have features on tag pairs

. 1
Pty =5 = o (3w i) + Y B

1=2

e

e
n

K

)
|

> Score: sum of weights dot f. features over each predicted tag (“emissions”
plus sum of weights dot f. features over tag pairs (“transitions”)

> This is a sequential CRF



Example

B-PER I-PER O O
Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(I-PER, i=2, x) + fo(O, i=3, x) + (O, i=4, x)
+ fi(B-PER, I-PER, i=1, x) + f:(I-PER, O, i=2, x) + (O, O, i=3, x)

B-PER B-PER O O

Barack Obama will travel

feats = fo(B-PER, i=1, x) + fo(B-PER, i=2, x) + f¢(O, i=3, x) + f(O, i=4, x)
+ fi(B-PER, B-PER, i=1, x) + f((B-PER, O, i=2, x) + f;(O, O, i=3, x)

> Obama can start a new named entity (emission feats look okay), but
we’re not likely to have two PER entities in a row (transition feats)



Sequential CRFs

i I - . L
Ply =y|x) = EGXP (ZW fe(9i,1,%) + ZW ft(yz‘byip%x))
i=1 '

> Critical property: this structure is allows us to use dynamic programming
(Viterbi) to sum or max over all sequences

> Inference: use Viterbi, just replace probabilities with exponentiated
weights * features

>~ Learning: need another dynamic program (forward-backward) to compute
gradients



CRFs Today

P(ylx) = 7 [ [ exp(@e(imr. 1)) [ exp(@e(vi.i.x)

>~ Generalization of sequential CRF with arbitrary function phi.
We can replace these with computations from neural nets (e.g.,
contextualized embedding from BERT -> linear layer to produce phi)

> Can backpropagate into BERT

>~ “Neural CRFs” for tagging (Lample et al., 2016), parsing (Durrett and Klein,
2015; Dozat and Manning, 2016)



CRFs Today

mn

P(ylx) = 7 [ [ exp(@e(imr. 1)) [ exp(@e(vi.i.x)

> Why aren’t CRFs used more today?

> We don’t often need to score transitions: If you have hard constraints
(e.g., cannot follow B-PER with I-ORG), you can simply integrate these
into inference. Train BERT to predict each label individually, then use
Viterbi to get a coherent sequence.

> ChatGPT and other such systems are decent at learning
structural constraints — so bigger models also learn most of
the constraints you really want



Takeaways

> POS and NER are two ways of capturing sequential structures

> POS: syntax, each word has a tag

> NER: spans, but we can turn them into tags with BIO

> Can handle these with generative or discriminative models, but
CRFs are most typically used (although these days you can also

just ask ChatGPT...)

> Next time: move from sequences to trees



