CS388: Natural Language Processing

Lecture 15: HMMs, POS

Greg Durrett

Administrivia

Project 3 due Thursday

This Lecture

Part-of-speech tagging

Hidden Markov Models, parameter estimation

Viterbi algorithm

POS taggers

NER, CRFs, state-of-the-art in sequence modeling

Where are we in the course?

- Next three lectures: structured prediction. Produce representations of language as sequences and trees
- Language has hierarchical structure:

Understanding syntax fundamentally requires trees — the sentences
have the same shallow analysis. But the first step we'll take towards
understanding this is understanding parts of speech

NN NNS VBZ NNS Teacher strikes idle kids VBP
I record the video

I listen to the record

POS Tagging

POS Tagging

Slide credit: Dan Klein

POS Tagging

VBD VB

VBN VBZ VBP VBZ

NNP NNS NN NNS CD NN

Fed raises interest rates 0.5 percent

I hereby increase interest rates 0.5%

VBD VB

VBN VBZ VBP VBZ

NNP NNS NN NNS CD NN

Fed raises interest rates 0.5 percent

I'm 0.5% interested in the Fed's raises!

- Other paths are also plausible but even more semantically weird...
- What governs the correct choice? Word + context
 - Word identity: most words have <=2 tags, many have one (percent, the)</p>
 - Context: nouns start sentences, nouns follow verbs, etc.

Hidden Markov Models

Hidden Markov Models

- Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$
- Model the sequence of tags y over words x as a Markov process
- Markov property: future is conditionally independent of the past given the present

$$(y_1) \rightarrow (y_2) \rightarrow (y_3)$$
 $P(y_3|y_1,y_2) = P(y_3|y_2)$

If **y** are tags, this roughly corresponds to assuming that the next tage only depends on the current tag, not anything before

Hidden Markov Models

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

 $y \in T = set of possible tags$ (including STOP); $x \in V = vocab of words$

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^n P(y_i|y_{i-1}) \prod_{i=1}^n P(x_i|y_i)$$
 Initial Transition Emission distribution probabilities probabilities

 Observation (x) depends only on current state (y)

HMMs: Parameters

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^{n} P(y_i | y_{i-1}) \prod_{i=1}^{n} P(x_i | y_i)$$

- Initial distribution: |T| x 1 vector (distribution over initial states)
- ► Emission distribution: |T| x |V| matrix (distribution over words per tag)
- ► Transition distribution: |T| x |T| matrix (distribution over next tags per tag)

STOP

HMMs Example

Tags = $\{N, V, STOP\}$ Vocabulary = {they, can, fish} **Emission** Initial Transition x_i y_i they can fish **STOP** N 1.0 N N N 1/5 3/5 1/5 0 y_1

V 1/5 1/5 3/5

1/2 1/2

Transitions in POS Tagging

```
VBD VBZ VBP VBZ NNP NNS NN NNS CD NN Fed raises interest rates 0.5 percent
```

- $P(y_1 = NNP)$ likely because start of sentence
- $P(y_2 = \mathrm{VBZ}|y_1 = \mathrm{NNP})$ likely because verb often follows noun
- $P(y_3 = NN|y_2 = VBZ)$: direct object can follow verb

How are these probabilities learned?

Training HMMs

- Transitions
 - Count up all pairs (y_i, y_{i+1}) in the training data
 - Count up occurrences of what tag T can transition to
 - Normalize to get a distribution for P(next tag | T)
 - Need to smooth this distribution, won't discuss here
- Emissions: similar count + normalize scheme, but trickier smoothing!
- You can write down the log likelihood and it is exactly optimized by this count + normalize scheme, so no need for SGD!

Inference: Viterbi Algorithm

Inference in HMMs

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^{n} P(y_i|y_{i-1}) \prod_{i=1}^{n} P(x_i|y_i)$$

- Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y},\mathbf{x})}{P(\mathbf{x})}$
- Exponentially many possible y here!
- Solution: dynamic programming (possible because of Markov structure!)

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

 $\max_{y_1,y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots P(y_2|y_1)P(x_2|y_2)P(y_1)P(x_1|y_1)$

Transition probabilities

Emission probabilities

Initial probability

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

$$= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

The only terms that depend on y₁

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)$$

Abstract away the score for all decisions till here into score

 Best (partial) score for a sequence ending in state s

$$score_1(s) = P(s)P(x_1|s)$$

slide credit: Vivek Srikumar

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)
= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)
= \max_{y_3, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)
= \max_{y_3, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)$$

Only terms that depend on y₂

slide credit: Vivek Srikumar

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^n P(y_{i+1}|y_i) \prod_{i=1}^n P(x_i|y_i)$$

$$\max_{y_1, y_2, \cdots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

$$= \max_{y_2, \cdots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

$$= \max_{y_2, \cdots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)$$

$$= \max_{y_3, \cdots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \text{score}_1(y_1)$$

$$= \max_{y_3, \cdots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \text{score}_2(y_2)$$

$$= \max_{y_3, \cdots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \cdots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \text{score}_2(y_2)$$

$$= \max_{y_3, \cdots, y_n} P(x_1 | y_{n-1}) P(x_1 | x_1) P(x_1 | x_1) P(x_1 | x_2)$$

$$= \max_{y_3, \cdots, y_n} P(x_1 | y_n) P(x_2 | y_n)$$

Abstract away the score for all decisions till here into score

slide credit: Vivek Srikumar

Viterbi Algorithm

"Think about" all possible immediate prior state values. Everything before that has already been accounted for by earlier stages.

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^{n-1} P(y_{i+1}|y_i) \prod_{i=1}^{n} P(x_i|y_i)$$

$$\max_{y_1,y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots P(y_2|y_1)P(x_2|y_2)P(y_1)P(x_1|y_1)$$

$$= \max_{y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots \max_{y_1} P(y_2|y_1)P(x_2|y_2)P(y_1)P(x_1|y_1)$$

$$= \max_{y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots \max_{y_1} P(y_2|y_1)P(x_2|y_2)\text{score}_1(y_1)$$

$$= \max_{y_2,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots \max_{y_2} P(y_3|y_2)P(x_3|y_3) \max_{y_1} P(y_2|y_1)P(x_2|y_2)\text{score}_1(y_1)$$

$$= \max_{y_3,\cdots,y_n} P(y_n|y_{n-1})P(x_n|y_n)\cdots \max_{y_2} P(y_3|y_2)P(x_3|y_3)\text{score}_2(y_2)$$

$$\vdots$$

$$= \max_{y_n,\cdots,y_n} \text{score}_n(y_n)$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_3$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_3$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_2$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_3$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_3$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_3$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_3$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_3$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_3$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_1$$

$$\downarrow_2$$

$$\downarrow_1$$

Abstract away the score for all decisions till here into score slide credit: Vivek Srikumar

 y_n

$$P(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) = P(y_1) \prod_{i=1}^{n-1} P(y_{i+1}|y_i) \prod_{i=1}^{n} P(x_i|y_i)$$

$$\max_{y_1, y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

$$= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) P(y_1) P(x_1 | y_1)$$

$$= \max_{y_2, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \operatorname{score}_1(y_1)$$

$$= \max_{y_3, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \max_{y_1} P(y_2 | y_1) P(x_2 | y_2) \operatorname{score}_1(y_1)$$

$$= \max_{y_3, \dots, y_n} P(y_n | y_{n-1}) P(x_n | y_n) \dots \max_{y_2} P(y_3 | y_2) P(x_3 | y_3) \operatorname{score}_2(y_2)$$

$$\vdots$$

$$= \max_{y_3, \dots, y_n} P(y_n | y_n)$$

$$\vdots$$

$$= \max_{y_3, \dots, y_n} P(y_n | y_n)$$

$$score_1(s) = P(s)P(x_1|s)$$

$$\frac{\text{score}_i(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_i|s) \frac{\text{score}_{i-1}(y_{i-1})}{\text{slide credit: Vivek Srikumar}}$$

1. Initial: For each state s, calculate

$$score_1(s) = P(s)P(x_1|s) = \pi_s B_{x_1,s}$$

2. Recurrence: For i = 2 to n, for every state s, calculate

$$score_{i}(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_{i}|s) score_{i-1}(y_{i-1})
= \max_{y_{i-1}} A_{y_{i-1},s} B_{s,x_{i}} score_{i-1}(y_{i-1})
y_{i-1}$$

3. Final state: calculate

$$\max_{\mathbf{y}} P(\mathbf{y}, \mathbf{x} | \pi, A, B) = \max_{s} \operatorname{score}_{n}(s)$$

π: Initial probabilities

A: Transitions

B: Emissions

This only calculates the max. To get final answer (argmax),

- keep track of which state corresponds to the max at each step
- build the answer using these back pointers

POS Taggers

HMM POS Tagging

- Penn Treebank English POS tagging: 44 tags
- Baseline: assign each word its most frequent tag: ~90% accuracy
- Trigram HMM (states are pairs of tags): ~95% accuracy / 55% on words not seen in train
- ► TnT tagger (Brants 1998, tuned HMM): 96.2% acc / 86.0% on unks
- CRF tagger (Toutanova + Manning 2000): 96.9% / 87.0%
- State-of-the-art (BiLSTM-CRFs, BERT): 97.5% / 89%+

Errors

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0 (177)	56	0	61	2	5	10	15	108	0	488
NN	244	0	103	0	12	1	1	29	5	6	19	525
NNP	107	106	0	132	5	0	7	5	I	2	0	427
NNPS	1	0	110	0	0	0	0	0	0	0	0	142
RB	72	21	7	0	0	16	138	1	0	0	0	295
RP	0	0	0	0	39	0	65	0	0	0	0	104
IN	11	0	1	0	169	103	0	1	0	0	0	323
VB	17	64	9	0	2	0	1	0	4	7	85	189
VBD	10	5	3	0	0	0	0	3	0	143	2	166
VBN	101	3	3	0	0	0	0	3	108	0	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

JJ/NN NN official knowledge

VBD RP/IN DT NN made up the story

RB VBD/VBN NNS recently sold shares

(NN NN: tax cut, art gallery, ...)

Slide credit: Dan Klein / Toutanova + Manning (2000)

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%
- Unknown word: 4.5%
- Could get right: 16% (many of these involve parsing!)
- Difficult linguistics: 20%

```
VBD / VBP? (past or present?)

They set up absurd situations, detached from reality
```

Underspecified / unclear, gold standard inconsistent / wrong: 58%

adjective or verbal participle? JJ / VBN?

a \$ 10 million fourth-quarter charge against discontinued operations

Manning 2011 "Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Linguistics?"

Other Languages

Language	CRF+	CRF	BTS	BTS*	
Bulgarian	97.97	97.00	97.84	97.02	
Czech	98.38	98.00	98.50	98.44	
Danish	95.93	95.06	95.52	92.45	
German	93.08	91.99	92.87	92.34	
Greek	97.72	97.21	97.39	96.64	
English	95.11	94.51	93.87	94.00	
Spanish	96.08	95.03	95.80	95.26	
Farsi	96.59	96.25	96.82	96.76	
Finnish	94.34	92.82	95.48	96.05	
French	96.00	95.93	95.75	95.17	
Indonesian	92.84	92.71	92.85	91.03	
Italian	97.70	97.61	97.56	97.40	
Swedish	96.81	96.15	95.57	93.17	
AVERAGE	96.04	95.41	95.85	95.06	

Universal POS tagset (~12 tags), cross-lingual model works as well as tuned CRF using external resources

NER

Named Entity Recognition

- BIO tagset: begin, inside, outside
- Sequence of tags should we use an HMM?
- Why might an HMM not do so well here?
 - Lots of O's
 - Insufficient features/capacity with multinomials (especially for unks)

HMMs Pros and Cons

Big advantage: transitions, scoring pairs of adjacent y's

- Big downside: not able to incorporate useful word context information
- Solution: switch from generative to discriminative model (conditional random fields) so we can condition on the *entire input*.
- Conditional random fields: logistic regression + features on pairs of y's

Conditional Random Fields

Conditional Random Fields

Flexible discriminative model for tagging tasks that can use arbitrary features of the input. Similar to logistic regression, but structured

```
Curr_word=Barack & Label=B-PER

Next_word=Obama & Label=B-PER

Curr_word_starts_with_capital=True & Label=B-PER

Posn_in_sentence=1st & Label=B-PER

Label=B-PER & Next-Label = I-PER
```

B-PER

I-PER

Tagging with Logistic Regression

Logistic regression over each tag individually: "different features" approach to

$$P(y_i = y | \mathbf{x}, i) = \frac{\exp(\mathbf{w}^\top \mathbf{f}(y, i, \mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}^\top \mathbf{f}(y', i, \mathbf{x}))}$$
 features for a single tag

Probability of the *i*th word getting assigned tag *y* (B-PER, etc.)

Tagging with Logistic Regression

Logistic regression over each tag individually: "different features" approach to

$$P(y_i = y | \mathbf{x}, i) = \frac{\exp(\mathbf{w}^{\top} \mathbf{f}(y, i, \mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}^{\top} \mathbf{f}(y', i, \mathbf{x}))}$$
 features for a single tag

Over all tags:

$$P(\mathbf{y} = \tilde{\mathbf{y}}|\mathbf{x}) = \prod_{i=1}^{n} P(y_i = \tilde{y}_i|\mathbf{x}, i) = \frac{1}{Z} \exp\left(\sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}(\tilde{y}_i, i, \mathbf{x})\right)$$

- Score of a prediction: sum of weights dot features over each individual predicted tag (this is a simple CRF but not the general form)
- Set Z equal to the product of denominators
- Conditional model: x is observed, unlike in HMMs

Example: "Emission Features" fe

B-PER I-PER O O
Barack Obama will travel

feats =
$$f_e(B-PER, i=1, x) + f_e(I-PER, i=2, x) + f_e(O, i=3, x) + f_e(O, i=4, x)$$

[CurrWord=Obama & label=I-PER, PrevWord=Barack & label=I-PER, CurrWordIsCapitalized & label=I-PER, ...]

B-PER B-PER O O

Barack Obama will travel

feats = $f_e(B-PER, i=1, x) + f_e(B-PER, i=2, x) + f_e(O, i=3, x) + f_e(O, i=4, x)$

Adding Structure

$$P(\mathbf{y} = \tilde{\mathbf{y}} | \mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}(\tilde{y}_i, i, \mathbf{x}) \right)$$

We want to be able to learn that some tags don't follow other tags — want to have features on tag pairs

$$P(\mathbf{y} = \tilde{\mathbf{y}}|\mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}_{e}(\tilde{y}_{i}, i, \mathbf{x}) + \sum_{i=2}^{n} \mathbf{w}^{\top} \mathbf{f}_{t}(\tilde{y}_{i-1}, \tilde{y}_{i}, i, \mathbf{x}) \right)$$

- Score: sum of weights dot f_e features over each predicted tag ("emissions") plus sum of weights dot f_t features over tag pairs ("transitions")
- This is a sequential CRF

Example

B-PER I-PER O O
Barack Obama will travel

feats =
$$\mathbf{f}_{e}(B-PER, i=1, \mathbf{x}) + \mathbf{f}_{e}(I-PER, i=2, \mathbf{x}) + \mathbf{f}_{e}(O, i=3, \mathbf{x}) + \mathbf{f}_{e}(O, i=4, \mathbf{x}) + \mathbf{f}_{t}(B-PER, I-PER, i=1, \mathbf{x}) + \mathbf{f}_{t}(I-PER, O, i=2, \mathbf{x}) + \mathbf{f}_{t}(O, O, i=3, \mathbf{x})$$

B-PER B-PER O O

Barack Obama will travel

feats =
$$\mathbf{f}_{e}(B-PER, i=1, \mathbf{x}) + \mathbf{f}_{e}(B-PER, i=2, \mathbf{x}) + \mathbf{f}_{e}(O, i=3, \mathbf{x}) + \mathbf{f}_{e}(O, i=4, \mathbf{x}) + \mathbf{f}_{t}(B-PER, B-PER, i=1, \mathbf{x}) + \mathbf{f}_{t}(B-PER, O, i=2, \mathbf{x}) + \mathbf{f}_{t}(O, O, i=3, \mathbf{x})$$

 Obama can start a new named entity (emission feats look okay), but we're not likely to have two PER entities in a row (transition feats)

Sequential CRFs

$$P(\mathbf{y} = \tilde{\mathbf{y}}|\mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}_{e}(\tilde{y}_{i}, i, \mathbf{x}) + \sum_{i=2}^{n} \mathbf{w}^{\top} \mathbf{f}_{t}(\tilde{y}_{i-1}, \tilde{y}_{i}, i, \mathbf{x}) \right)$$

- Critical property: this structure is allows us to use dynamic programming (Viterbi) to sum or max over all sequences
- Inference: use Viterbi, just replace probabilities with exponentiated weights * features
- Learning: need another dynamic program (forward-backward) to compute gradients

CRFs Today

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

- Generalization of sequential CRF with arbitrary function phi.
 We can replace these with computations from neural nets (e.g., contextualized embedding from BERT -> linear layer to produce phi)
- Can backpropagate into BERT
- "Neural CRFs" for tagging (Lample et al., 2016), parsing (Durrett and Klein, 2015; Dozat and Manning, 2016)

CRFs Today

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

- Why aren't CRFs used more today?
 - We don't often need to score transitions: If you have hard constraints (e.g., cannot follow B-PER with I-ORG), you can simply integrate these into inference. Train BERT to predict each label individually, then use Viterbi to get a coherent sequence.
 - ChatGPT and other such systems are decent at learning structural constraints — so bigger models also learn most of the constraints you really want

Takeaways

- POS and NER are two ways of capturing sequential structures
 - POS: syntax, each word has a tag
 - NER: spans, but we can turn them into tags with BIO
- Can handle these with generative or discriminative models, but CRFs are most typically used (although these days you can also just ask ChatGPT...)
- Next time: move from sequences to trees