CS388: Natural Language Processing

Lecture 16: Syntax I

Some slides adapted from Dan Klein, UC Berkeley

Administrivia

Project 3 due today

Recap: POS Tagging

Layer of shallow syntactic analysis

NN NNS VBZ NNS

VBP

NN

Teacher strikes idle kids

I record the video

I listen to the record

One way to model it: Hidden Markov Models, generative models of P(y, x) from which we compute the posterior $P(y \mid x)$ (+ use Viterbi to max)

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^{n} P(y_i | y_{i-1}) \prod_{i=1}^{n} P(x_i | y_i)$$

 Can also use conditional random fields (discriminative) or even neural CRFs — better for tasks like named entity recognition

This Lecture

- Constituency formalism
- Context-free grammars and the CKY algorithm
- Refining grammars
- Dependency grammar

Constituency

Syntax

- Study of word order and how words form sentences
- Why do we care about syntax?
 - Multiple interpretations of words (noun or verb?)
 - ► Recognize verb-argument structures (who is doing what to whom?)
 - Higher level of abstraction beyond words: some languages are SVO, some are VSO, some are SOV, parsing can canonicalize

Constituency Parsing

- Tree-structured syntactic analyses of sentences
- Common things: noun phrases, verb phrases, prepositional phrases
- Bottom layer is POS tags
- Examples will be in English. Constituency makes sense for a lot of languages but not all

bought food at the store

Context-Free Grammars, CKY

CFGs and PCFGs

Gran	nmar (CFG)	Lexicon		
ROOT → S	1.0 NP \rightarrow NP PP	0.3	NN → interest	1.0
$S \rightarrow NP VP$	$1.0 \text{ VP} \rightarrow \text{VBP NP}$	0.7	NNS → raises	1.0
$NP \rightarrow DT NN$	$0.2 \text{ VP} \rightarrow \text{VBP NP PP}$	0.3	VBP → interest	1.0
$NP \to NN\;NNS$	$0.5 \text{ PP} \rightarrow \text{IN NP}$	1.0	VBZ → raises	1.0

- ► Context-free grammar: symbols which rewrite as one or more symbols
- Lexicon consists of "preterminals" (POS tags) rewriting as terminals (words)
- ► CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules
- ▶ PCFG: probabilities associated with rewrites, normalize by source symbol

CKY

- Dynamic programming: chart maintains the best way of building symbol X over span (i, j)
- CKY = Viterbi, there is also an algorithm called insideoutside = forward-backward

Cocke-Kasami-Younger

CKY

- Chart: T[i,i,X] = best score for X over (i, j)
- ▶ Base: $T[i,i+1,X] = log P(X \rightarrow w_i)$
- Loop over all split points k, apply rules X -> Y Z to build X in every possible way

- Recurrence: $T[i,j,X] = \max \max T[i,k,X1] + T[k,j,X2] + \log P(X \rightarrow X1 X2)$ k r: $X \rightarrow X1 X2$
- ► Runtime: O(n³G) G = grammar constant

CKY Example

Unary Rules

- Unary productions in treebank need to be dealt with by parsers
- Binary trees over n words have at most n-1 nodes, but you can have unlimited numbers of nodes with unaries ($S \rightarrow SBAR \rightarrow NP \rightarrow S \rightarrow ...$)
- In practice: enforce at most one unary over each span, modify CKY accordingly

- ► Precision: number of correct brackets / num pred brackets = 2/3
- ► Recall: number of correct brackets / num of gold brackets = 2/4
- F1: harmonic mean of precision and recall = $(1/2 * ((2/4)^{-1} + (2/3)^{-1}))^{-1}$ = 0.57

Results

- Standard dataset for English: Penn Treebank (Marcus et al., 1993)
 - Evaluation: F1 over labeled constituents of the sentence
- Vanilla PCFG: ~75 F1
- ▶ Best PCFGs for English: ~90 F1
- ► SOTA (discriminative models): 95 F1
- Other languages: results vary widely depending on annotation + complexity of the grammar

Klein and Manning (2003)

- Language is not context-free: NPs in different contexts rewrite differently
- ► Can we make the grammar "less context-free"?

Vertical Markovization

Why is this a good idea?

75 F1 with basic PCFG => 86.3 F1 with this highly customized PCFG, including other tweaks (SOTA was 90 F1 at the time, but with more complex methods)
 Klein and Manning (2003)

use the words

Lexicalized Parsers

- Annotate each grammar symbol with its "head word": most important word of that constituent
- Rules for identifying headwords (e.g., the last word of an NP before a preposition is typically the head)
- Collins and Charniak (late 90s): ~89 F1 with these

State-of-the-art Constituency Parsers

Pre-trained Models

- Improves the neural CRF by using a transformer layer (self-attentive), character-level modeling, and ELMo
- 95.21 on Penn Treebank dev set much better than past parsers! (~92-93)
- This constituency parser with BERT is one of the strongest today, or use a transition-based version due to Kitaev and Klein (2020)

Kitaev and Klein (2018)

Dependency Syntax

Dependency Parsing

- Dependency syntax: syntactic structure is defined by these arcs
- ► Head (parent, governor) connected to dependent (child, modifier)
- Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

POS tags same as before, usually run a tagger first as preprocessing

Dependency Parsing

► Still a notion of hierarchy! Subtrees often align with constituents

Dependency Parsing

- Can label dependencies according to syntactic function
- Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)

Dependency vs. Constituency: PP Attachment

Constituency: several rule productions need to change

Dependency vs. Constituency: PP Attachment

Dependency: one word (with) assigned a different parent

- More predicate-argument focused view of syntax
- "What's the main verb of the sentence? What is its subject and object?" — easier to answer under dependency parsing

Dependency vs. Constituency: Coordination

► Constituency: ternary rule NP -> NP CC NP

Dependency vs. Constituency: Coordination

Dependency: first item is the head

dogs in houses and cats
[dogs in houses] and cats

dogs in **houses and cats**

[dogs in houses] and cats dogs in [houses and cats]

- Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency
- Can also choose and to be the head
- In both cases, headword doesn't really represent the phrase constituency representation makes more sense

Takeaways

- ▶ PCFGs estimated generatively can perform well if sufficiently engineered
- Neural CRFs work well for constituency parsing
- ► Next time: revisit lexicalized parsing as dependency parsing