
CS388:	Natural	Language	Processing

Greg	Durret

Lecture	16:	Syntax	I

Some	slides	adapted	from	Dan	Klein,	UC	Berkeley

Administrivia

‣ Project	3	due	today

Recap:	POS	Tagging

Teacher	strikes	idle	kids
NN						NNS			VBZ	NNS

I	record	the	video
VBP

I	listen	to	the	record
NN

‣ Layer	of	shallow	syntactic	analysis

‣ One	way	to	model	it:	Hidden	Markov	Models,	generative	models	of	P(y,	x)	
from	which	we	compute	the	posterior	P(y	|	x)	(+	use	Viterbi	to	max)

y1 y2 yn

x1 x2 xn

… P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

‣ Can	also	use	conditional	random	fields	
(discriminative)	or	even	neural	CRFs	—	better	
for	tasks	like	named	entity	recognition

This	Lecture

‣ Constituency	formalism

‣ Context-free	grammars	and	the	CKY	algorithm

‣ Refining	grammars

‣ Dependency	grammar

Constituency

Syntax

‣ Study	of	word	order	and	how	words	form	sentences

‣ Why	do	we	care	about	syntax?

‣ Recognize	verb-argument	structures	(who	is	doing	what	to	whom?)

‣ Multiple	interpretations	of	words	(noun	or	verb?)

‣ Higher	level	of	abstraction	beyond	words:	some	languages	are	SVO,	
some	are	VSO,	some	are	SOV,	parsing	can	canonicalize

Constituency	Parsing

‣ Tree-structured	syntactic	analyses	of	sentences

‣ Common	things:	noun	phrases, 
verb	phrases,	prepositional	phrases

‣ Bottom	layer	is	POS	tags

‣ Examples	will	be	in	English.	Constituency 
makes	sense	for	a	lot	of	languages	but 
not	all

sentential	complement

whole	embedded	sentence

adverbial	phrase

Constituency	Parsing

A					refund						that					the					court					estimated

§  If	we	do	no	annota+on,	these	trees	differ	only	in	one	rule:	
§  VP	→	VP	PP	
§  NP	→	NP	PP	

§  Parse	will	go	one	way	or	the	other,	regardless	of	words	
§  Lexicaliza+on	allows	us	to	be	sensi+ve	to	specific	words	

§  If	we	do	no	annota+on,	these	trees	differ	only	in	one	rule:	
§  VP	→	VP	PP	
§  NP	→	NP	PP	

§  Parse	will	go	one	way	or	the	other,	regardless	of	words	
§  Lexicaliza+on	allows	us	to	be	sensi+ve	to	specific	words	

Challenges

‣ PP	attachment

same	parse	as	“the	cake	with	some	icing”

Challenges:	NP	Internal	Structure

NP

NN NNNN
plastic cup holder

NP

NN

NN

NN
plastic cup

holder
NP

Constituency
‣ How	do	we	know	what	the	constituents	are?

‣ Constituency	tests:
‣ Substitution	by	proform	(e.g.,	pronoun)

‣ Clefting	(It	was	with	a	spoon	that…)

‣ Answer	ellipsis	(What	did	they	eat?	the	cake) 
																											(How?	with	a	spoon)

‣ Sometimes	constituency	is	not	clear,	e.g.,	coordination:	she	went	to	and	
bought	food	at	the	store

Context-Free	Grammars,	CKY

CFGs	and	PCFGs§  Write	symbolic	or	logical	rules:	

§  Use	deduc4on	systems	to	prove	parses	from	words	
§  Minimal	grammar	on	“Fed	raises”	sentence:	36	parses	
§  Simple	10-rule	grammar:	592	parses	
§  Real-size	grammar:	many	millions	of	parses	

§  This	scaled	very	badly,	didn’t	yield	broad-coverage	tools	

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP

‣ Context-free	grammar:	symbols	which	rewrite	as	one	or	more	symbols

‣ Lexicon	consists	of	“preterminals”	(POS	tags)	rewriting	as	terminals	(words)

‣ CFG	is	a	tuple	(N,	T,	S,	R):	N	=	nonterminals,	T	=	terminals,	S	=	start	
symbol	(generally	a	special	ROOT	symbol),	R	=	rules

‣ PCFG:	probabilities	associated	with	rewrites,	normalize	by	source	symbol

0.2
0.5

0.3
0.7
0.3
1.0

1.0
1.0

1.0
1.0
1.0
1.0

Estimating	PCFGs

‣ Maximum	likelihood	PCFG	for	a	set	of	
labeled	trees:	count	and	normalize!	
Same	as	HMMs	/	Naive	Bayes

S	→	NP	VP

NP	→	PRP

NP	→	DT	NN

…

1.0

0.5

0.5

‣ Tree	T	is	a	series	of	rule	applications	r. P (T) =
Y

r2T

P (r|parent(r))

Binarization
‣ To	parse	efficiently,	we	need	our	PCFGs	to	be	at	most	binary	(not	CNF)

VP

VBD NP PP PP

sold the	book to	her for	$3

P(VP	→	VBD	NP	PP	PP)	=	0.2

VP

VBD VP

NP

PP

VP

PP

VP

VBD VP-[NP	PP	PP]

NP

PP

VP-[PP	PP]

PP

‣ Lossless: ‣ Lossy:

P(VP	→	VBZ	PP)	=	0.1

…

CKY

He wrote a long report on Mars

NP
PP

NP

‣ Find	argmax	P(T|x)	=	argmax	P(T,	x)

‣ Dynamic	programming:	chart	maintains	the 
best	way	of	building	symbol	X	over 
span	(i,	j)

‣ CKY	=	Viterbi,	there	is	also	
an	algorithm	called	inside-
outside	=	forward-backward

Cocke-Kasami-Younger

i jk

X

Z
Y

CKY

‣ Chart:	T[i,j,X]	=	best	score	for	X	
over	(i,	j)

‣ Base:	T[i,i+1,X]	=	log	P(X	→	wi)

w1

‣ Recurrence: 
T[i,j,X]	=	max					max					T[i,k,X1]	+	T[k,j,X2]	+	log	P(X	→	X1	X2)

w2 w3 w4

T[i,j,X]
NP

VP S …

k r:	X	→	X1	X2

‣ Runtime:	O(n3G)		G	=	grammar	constant

‣ Loop	over	all	split	points	k, 
apply	rules	X	->	Y	Z	to	build 
X	in	every	possible	way

S[0,4]	=>	NP[0,2]	VP[2,4]

CKY	Example

Recurrence: 
T[i,j,X]	=	max					max					T[i,k,X1]	+	T[k,j,X2]	+	log	P(X	→	X1	X2)

k r:	X	→	X1	X2

the																												child																															raises																																	it
DT	->	the			1
NN	->	child			1
NNS	->	raises			1

VBZ	->	raises			1
PRP	->	it			1

S	->	NP	VP			1
NP	->	DT	NN			1/2
NP	->	NN	NNS			1/2

VP	->	VBZ	PRP	1

Unary	Rules

SBAR

S

the	rat	the	cat	chased	squeaked

NP

NNS
mice

‣ Unary	productions	in	treebank	need	to	be	dealt	with	by	parsers

‣ Binary	trees	over	n	words	have	at	most	n-1	nodes,	but	you	can	have	
unlimited	numbers	of	nodes	with	unaries	(S	→	SBAR	→	NP	→	S	→	…)

‣ In	practice:	enforce	at	most	one	unary	over	each	span,	modify	CKY	
accordingly

Parser	Evaluation
S(0,3),	
NP(0,1),	
VP(1,3),	
NP(2,3),	
PRP(0,1),	
VBD(1,2),	
PRP(2,3)

S

NP

She saw it

NN PRPPRP

0									1										2							3

NP

S(0,3),	
NP(0,2),	
NP(2,3),	
PRP(0,1),	
NN(1,2),	
PRP(2,3)

‣ Precision:	number	of	correct	brackets	/	num	pred	brackets =	2/3

‣ Recall:	number	of	correct	brackets	/	num	of	gold	brackets =	2/4

‣ F1:	harmonic	mean	of	precision	and	recall	=	(1/2	*	((2/4)-1	+	(2/3)-1))-1

=	0.57

S

NP
VP

She saw it

VBD PRPPRP

0									1										2							3

NP

Results

Klein	and	Manning	(2003)

‣ Standard	dataset	for	English:	Penn	Treebank	(Marcus	et	al.,	1993)

‣ Evaluation:	F1	over	labeled	constituents	of	the	sentence

‣ Vanilla	PCFG:	~75	F1

‣ Best	PCFGs	for	English:	~90	F1

‣ Other	languages:	results	vary	widely	depending	on	annotation	+	
complexity	of	the	grammar

‣ SOTA	(discriminative	models):	95	F1

Refining	Generative	Grammars

PCFG	Independence	Assumptions

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

‣ Language	is	not	context-free:	NPs	in	different	contexts	rewrite	differently

‣ Can	we	make	the	grammar	“less	context-free”?

Vertical	Markovization

S^ROOT

NP^S VP^S

She saw it

VBD^VP PRP^VPPRP^NP

S

NP VP

She saw it

VBD PRPPRP

Basic	tree	(v	=	0) v	=	1	Markovization

‣ Why	is	this	a	good	idea?

Horizontal	Markovization

VP

sold books to	her

NP PPVBZ PP

for	$50

VP

sold

books

to	her

NP

PP

VBZ

PP

for	$50

VP	[…	VBZ]

VP	[…	NP]

h	=	2:	VP	[…	VBZ	NP]

h	=	1:	VP	[…	NP]

h	=	0:	VP

h	=	2:	VP	[…	<s>	VBZ]

h	=	1:	VP	[…	VBZ]

h	=	0:	VP

‣ Changes	amount	of	context	remembered 
in	binarization	process

Annotated	Tree

Klein	and	Manning	(2003)

‣ 75	F1	with	basic	PCFG	=>	86.3	F1	with	this	highly	customized	PCFG,	
including	other	tweaks	(SOTA	was	90	F1	at	the	time,	but	with	more	
complex	methods)

Lexicalized	Parsers

§  What’s	different	between	basic	PCFG	scores	here?	
§  What	(lexical)	correla;ons	need	to	be	scored?	

‣ Even	with	parent	annotation,	these	trees	have	the	same	rules.	Need	to	
use	the	words

Lexicalized	Parsers
§  Add	“head	words”	to	

each	phrasal	node	
§  Syntac4c	vs.	seman4c	

heads	
§  Headship	not	in	(most)	

treebanks	
§  Usually	use	head	rules,	

e.g.:	
§  NP:	

§  Take	leFmost	NP	
§  Take	rightmost	N*	
§  Take	rightmost	JJ	
§  Take	right	child	

§  VP:	
§  Take	leFmost	VB*	
§  Take	leFmost	VP	
§  Take	leF	child	

‣ Annotate	each	grammar	symbol	with	
its	“head	word”:	most	important	
word	of	that	constituent

‣ Rules	for	identifying	headwords	(e.g.,	
the	last	word	of	an	NP	before	a	
preposition	is	typically	the	head)

‣ Collins	and	Charniak	(late	90s):	
~89	F1	with	these

State-of-the-art	Constituency	Parsers

CRF	Parsing

Taskar	et	al.	(2004)

Hall,	Durrett,	and	Klein	(2014) 

Durrett	and	Klein	(2015)

score

Left	child	last	word	=	report ∧ NP PP
NP

w>f NP PP

NP

2 5 7
=

f NP PP

NP

2 5 7
He		wrote		a		long		report		on		Mars		.

PPNP

NP

=
2 5 7

wrote				a		long		report								on		Mars								.

wrote				a		long		report								on		Mars								.

‣ Can	learn	that	we	report	[PP],	which	is	common	due	to	reporting	on	things

‣ Can	“neuralize”	this	as	well	like	neural	CRFs	for	NER

+Discrete Continuous

He wrote a long report on Mars

NP
PP

NP

‣ Chart	remains	discrete!

‣ Feedforward	pass	on	nets

‣ Run	CKY	dynamic	program

‣ Discrete	feature	computation

+Discrete Continuous

…

Parsing	a	sentence:

Durrett	and	Klein	(ACL	2015)

Joint	Discrete	and	Continuous	Parsing

Pre-trained	Models

Kitaev	and	Klein	(2018)

‣ Improves	the	neural	CRF	by	using	a	
transformer	layer	(self-attentive),	
character-level	modeling,	and	ELMo

‣ 95.21	on	Penn	Treebank	dev	set	—	much	
better	than	past	parsers!	(~92-93)

‣ This	constituency	parser	with	BERT	is	
one	of	the	strongest	today,	or	use	a	
transition-based	version	due	to	Kitaev	
and	Klein	(2020)

Dependency	Syntax

Lexicalized	Parsing

S(ran)

NP(dog)

VP(ran)

PP(to)

NP(house)

DT(the) NN(house)TO(to)VBD(ran)DT(the) NN(dog)
the housetoranthe dog

Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntactic	structure	is	defined	by	these	arcs

‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)

‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol,	
dependencies	must	form	a	directed	acyclic	graph

ROOT

‣ POS	tags	same	as	before,	usually	run	a	tagger	first	as	preprocessing

Dependency	Parsing

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ Still	a	notion	of	hierarchy!	Subtrees	often	align	with	constituents

Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Can	label	dependencies	according	to	syntactic	function

det

‣ Major	source	of	ambiguity	is	in	the	structure,	so	we	focus	on	that	more	
(labeling	separately	with	a	classifier	works	pretty	well)

nsubj

pobj

detprep

Dependency	vs.	Constituency:	PP	Attachment

‣ Constituency:	several	rule	productions	need	to	change

the	children	ate	the	cake	with	a	spoon

‣ Dependency:	one	word	(with)	assigned	a	different	parent

Dependency	vs.	Constituency:	PP	Attachment

‣ More	predicate-argument	focused	view	of	syntax

‣ “What’s	the	main	verb	of	the	sentence?	What	is	its	subject	and	object?”	
—	easier	to	answer	under	dependency	parsing

‣ Constituency:	ternary	rule	NP	->	NP	CC	NP

Dependency	vs.	Constituency:	Coordination

dogs	in	houses	and	cats

‣ Dependency:	first	item	is	the	head

Dependency	vs.	Constituency:	Coordination

dogs	in	houses	and	cats

‣ Coordination	is	decomposed	across	a	few	arcs	as	opposed	to	being	a	
single	rule	production	as	in	constituency

‣ Can	also	choose	and	to	be	the	head
‣ In	both	cases,	headword	doesn’t	really	represent	the	phrase	—	
constituency	representation	makes	more	sense

[dogs	in	houses]	and	cats dogs	in	[houses	and	cats]

Takeaways

‣ PCFGs	estimated	generatively	can	perform	well	if	sufficiently	engineered

‣ Neural	CRFs	work	well	for	constituency	parsing

‣ Next	time:	revisit	lexicalized	parsing	as	dependency	parsing

