
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	17:	
Syntax	II:	Dependency	
Parsing

Administrivia

‣ Project	3	graded	by	end	of	week

‣ Final	project	presentaIons	announced

Recall:	ConsItuency

‣ Tree-structured	syntacIc	analyses	of	sentences

‣ Nonterminals	(NP,	VP,	etc.)	as	well	as	POS	
tags	(bo8om	layer)

‣ Structured	is	defined	by	a	CFG

Recall:	PCFGs§  Write	symbolic	or	logical	rules:	

§  Use	deduc4on	systems	to	prove	parses	from	words	
§  Minimal	grammar	on	“Fed	raises”	sentence:	36	parses	
§  Simple	10-rule	grammar:	592	parses	
§  Real-size	grammar:	many	millions	of	parses	

§  This	scaled	very	badly,	didn’t	yield	broad-coverage	tools	

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP

‣ Context-free	grammar:	symbols	which	rewrite	as	one	or	more	symbols

‣ Lexicon	consists	of	“preterminals”	(POS	tags)	rewriIng	as	terminals	(words)

‣ CFG	is	a	tuple	(N,	T,	S,	R):	N	=	nonterminals,	T	=	terminals,	S	=	start	
symbol	(generally	a	special	ROOT	symbol),	R	=	rules

‣ PCFG:	probabiliIes	associated	with	rewrites,	normalize	by	source	symbol

0.2
0.5

0.3
0.7
0.3
1.0

1.0
1.0

1.0
1.0
1.0
1.0

Recall:	CKY

He wrote a long report on Mars

NP
PP

NP

‣ Find	argmax	P(T|x)	=	argmax	P(T,	x)

‣ Dynamic	programming:	chart	maintains	the	
best	way	of	building	symbol	X	over	
span	(i,	j)

‣ Loop	over	all	split	points	k,	
apply	rules	X	->	Y	Z	to	build	
X	in	every	possible	way

Cocke-Kasami-Younger

i jk

X

Z
Y

Outline

‣ Dependency	representaIon,	contrast	with	consItuency

‣ Graph-based	dependency	parsers

‣ TransiIon-based	(shid-reduce)	dependency	parsers

‣ State-of-the-art	parsers

Dependency	RepresentaIon

Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntacIc	structure	is	defined	by	these	arcs	
‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol,	
dependencies	must	form	a	directed	acyclic	graph

ROOT

‣ POS	tags	same	as	before,	usually	run	a	tagger	first	as	preprocessing

Dependency	Parsing

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ SIll	a	noIon	of	hierarchy!	Subtrees	oden	align	with	consItuents

Dependency	vs.	ConsItuency:	PP	A8achment

‣ ConsItuency:	several	rule	producIons	need	to	change

the	children	ate	the	cake	with	a	spoon

‣ Dependency:	one	word	(with)	assigned	a	different	parent

Dependency	vs.	ConsItuency:	PP	A8achment

‣ More	predicate-argument	focused	view	of	syntax

‣ “What’s	the	main	verb	of	the	sentence?	What	is	its	subject	and	object?”	
—	easier	to	answer	under	dependency	parsing

‣ ConsItuency:	ternary	rule	NP	->	NP	CC	NP

Dependency	vs.	ConsItuency:	CoordinaIon

dogs	in	houses	and	cats

‣ Dependency:	first	item	is	the	head

Dependency	vs.	ConsItuency:	CoordinaIon

dogs	in	houses	and	cats

‣ CoordinaIon	is	decomposed	across	a	few	arcs	as	opposed	to	being	a	
single	rule	producIon	as	in	consItuency

‣ Can	also	choose	and	to	be	the	head
‣ In	both	cases,	headword	doesn’t	really	represent	the	phrase	—	
consItuency	representaIon	makes	more	sense

[dogs	in	houses]	and	cats dogs	in	[houses	and	cats]

Stanford	Dependencies
‣ Designed	to	be	pracIcally	useful	for	relaIon	extracIon

Standard Collapsed

Bills	on	ports	and	immigraIon	were	submi8ed	by	Senator	Brownback,	Republican	of	Kansas

Dependency	vs.	ConsItuency
‣ Dependency	is	oden	more	useful	in	pracIce	(models	predicate	argument	
structure)

‣ PP	a8achment	is	be8er	modeled	under	dependency

‣ CoordinaIon	is	be8er	modeled	under	consItuency

‣ Slightly	different	representaIonal	choices:

‣ Dependency	parsers	are	easier	to	build:	no	“grammar	engineering”,	no	
unaries,	easier	to	get	structured	discriminaIve	models	working	well

‣ Dependency	parsers	are	usually	faster

‣ Dependencies	are	more	universal	cross-lingually:	Czech	was	one	of	the	
first	languages	for	dep	parsing	in	NLP	due	to	its	free	word	order

Universal	Dependencies
‣ Annotate	dependencies	with	the	same	representaIon	in	many	languages

h8p://universaldependencies.org/

English

Bulgarian

Czech

Swiss

Graph-Based	Parsing

Defining	Dependency	Graphs

‣ Words	in	sentence	x,	tree	T	is	a	collecIon	of	directed	edges	(parent(i),	i)	
for	each	word	i

‣ Each	word	has	exactly	one	parent.	Edges	must	form	a	projecIve	tree

‣ Log-linear	CRF	(discriminaIve):

‣ Example	of	a	feature	=	I[head=to	&	modifier=house]

the housetoranthe dogROOT

P (T |x) = exp

X

i

w>f(i, parent(i),x)

!

‣ Parsing	=	idenIfy	parent(i)	for	each	word

Biaffine	Neural	Parsing
‣ Neural	CRFs	for	dependency	parsing:	let	c	=	LSTM	embedding	of	i,	p	=	
LSTM	embedding	of	parent(i).	score(i,	parent(i),	x)	=	pTUc

Dozat	and	Manning	(2017)

(num	words	x	hidden	size) (num	words	x	
num	words)

LSTM	looks	at	words	and	POS

Generalizing	CKY

wrote a long report on Mars

4
5

4

2 5

‣ score(2,	7,	4)	=	max(score(2,	7,	4),	new	score)

‣ new	score	=	chart(2,	5,	4)	+	chart(5,	7,	5)	+	edge	score(4	->	5)
‣ DP	chart	with	three	dimensions:	start,	end,	and	head,	start	<=	head	<	end

‣ Many	spurious	deriva0ons:	
can	build	the	same	tree	in	many	
ways…need	a	be8er	algorithm

4	=	report
5	=	on

4 7

‣ Eisner’s	algorithm	is	cubic	Ime

EvaluaIng	Dependency	Parsing
‣ UAS:	unlabeled	a8achment	score.	Accuracy	of	choosing	each	word’s	
parent	(n	decisions	per	sentence)

‣ Log-linear	CRF	parser,	decoding	with	Eisner	algorithm:	91	UAS

‣ LAS:	addiIonally	consider	label	for	each	edge

‣ Higher-order	features	from	Koo	parser:	93	UAS

‣ Best	English	results	with	neural	CRFs	(Dozat	and	Manning):	95-96	UAS

Shid-Reduce	Parsing

Shid-Reduce	Parsing

‣ Similar	to	determinisIc	parsers	for	compilers

‣ A	tree	is	built	from	a	sequence	of	incremental	decisions	moving	
led	to	right	through	the	sentence

‣ Shids	consume	the	buffer,	reduces	build	a	tree	on	the	stack

‣ Stack	containing	parIally-built	tree,	buffer	containing	rest	of	
sentence

‣ Also	called	transiIon-based	parsing

Shid-Reduce	Parsing

I	ate	some	spaghez	bolognese

ROOT

‣ Shid	1:	Stack:		[ROOT	I]				Buffer:		[ate	some	spaghez	bolognese]

‣ Shid:	top	of	buffer	->	top	of	stack

‣ IniIal	state:	Stack:		[ROOT]				Buffer:		[I	ate	some	spaghez	bolognese]

‣ Shid	2:	Stack:		[ROOT	I	ate]				Buffer:		[some	spaghez	bolognese]

Shid-Reduce	Parsing

I	ate	some	spaghez	bolognese

ROOT

‣ State:	Stack:		[ROOT	I	ate]				Buffer:		[some	spaghez	bolognese]

‣ Led-arc	(reduce):	Let					denote	the	stack,															=	stack	ending	in	w-1�
‣ “Pop	two	elements,	add	an	arc,	put	them	back	on	the	stack”

‣ State:	Stack:		[ROOT	ate]				Buffer:		[some	spaghez	bolognese]

I

�|w�2, w�1 ! �|w�1 w�1w�2 is	now	a	child	of

�|w�2, w�1 ! �|w�1

Arc-Standard	Parsing

‣ Start:	stack	contains	[ROOT],	buffer	contains	[I	ate	some	spaghez	bolognese]

‣ Shid:	top	of	buffer	->	top	of	stack
‣ Led-Arc: �|w�2, w�1 ! �|w�1 w�1w�2

‣ Right-Arc �|w�2, w�1 ! �|w�2

is	now	a	child	of,

w�1 w�2,

I	ate	some	spaghez	bolognese

‣ End:	stack	contains	[ROOT],	buffer	is	empty	[]

‣ How	many	transiIons	do	we	need	if	we	have	n	words	in	a	sentence?

is	now	a	child	of

ROOT

‣ Arc-standard	system:	three	operaIons

Arc-Standard	Parsing

[I	ate	some	spaghez	bolognese][ROOT]

[ROOT	I]

[ROOT	I	ate]

[ROOT	ate]

I

S

S

L

‣ Could	do	the	led	arc	later!	But	no	reason	to	wait
‣ Can’t	a8ach	ROOT	<-	ate	yet	even	though	this	is	a	correct	dependency!

S					top	of	buffer	->	top	of	stack
LA
RA

[ate	some	spaghez	bolognese]

[some	spaghez	bolognese]

[some	spaghez	bolognese]

I	ate	some	spaghez	bolognese

ROOT
pop	two,	led	arc	between	them
pop	two,	right	arc	between	them

Arc-Standard	Parsing

[ROOT	ate]

I

[some	spaghez	bolognese]

[ROOT	ate	some	spaghez]

I

[bolognese]

[ROOT	ate	spaghez]

I some

[bolognese]

S

L

I	ate	some	spaghez	bolognese

S

ROOT

S

S					top	of	buffer	->	top	of	stack
LA
RA

pop	two,	led	arc	between	them
pop	two,	right	arc	between	them

Arc-Standard	Parsing

[ROOT	ate	spaghez	bolognese]

I some

[ROOT	ate	spaghez]

I some bolognese
[ROOT	ate]

I
some bolognese

spaghez

‣ Stack	consists	of	all	words	that	are	
sIll	waiIng	for	right	children,	end	
with	a	bunch	of	right-arc	ops

[ROOT]

I
some bolognese

spaghez
ate

[]

I	ate	some	spaghez	bolognese

ROOT

[]

[]
[]

Final	state:

R

R

S					top	of	buffer	->	top	of	stack
LA
RA

pop	two,	led	arc	between	them
pop	two,	right	arc	between	them

Building	Shid-Reduce	Parsers

[ROOT	ate	some	spaghez]

I

[bolognese]

‣ MulI-way	classificaIon	problem:	shid,	led-arc,	or	right-arc?

[ROOT] [I	ate	some	spaghez	bolognese]

‣ How	do	we	make	the	right	decision	in	this	case?

‣ How	do	we	make	the	right	decision	in	this	case?	(all	three	acIons	legal)

‣ Only	one	legal	move	(shid)

argmaxa2{S,LA,RA}w
>f(stack, bu↵er, a)

Features	for	Shid-Reduce	Parsing

[ROOT	ate	some	spaghez]

I

[bolognese]

‣ Features	to	know	this	should	led-arc?

‣ One	of	the	harder	feature	design	tasks!

‣ In	this	case:	the	stack	tag	sequence	VBD	-	DT	-	NN	is	pre8y	informaIve	
—	looks	like	a	verb	taking	a	direct	object	which	has	a	determiner	in	it

‣ Things	to	look	at:	top	words/POS	of	buffer,	top	words/POS	of	stack,	
ledmost	and	rightmost	children	of	top	items	on	the	stack

Training	a	Greedy	Model

[ROOT	ate	some	spaghez]

I

[bolognese]

‣ Train	a	classifier	to	predict	the	right	decision	using	these	as	training	data
‣ Can	turn	a	tree	into	a	decision	sequence	a	by	building	an	oracle

‣ Training	data	assumes	you	made	correct	decisions	up	to	this	point	
and	teaches	you	to	make	the	correct	decision,	but	what	if	you	
screwed	up…

argmaxa2{S,LA,RA}w
>f(stack, bu↵er, a)

Greedy	training

‣ Greedy:	2n	local	training	examples

State	space

Gold	end	stateStart	state

‣ Non-gold	states	unobserved	during	training:	consider	
making	bad	decisions	but	don’t	condi0on	on	bad	decisions

Speed	Tradeoffs

UnopImized	S-R{
{
{
{

Chen	and	Manning	(2014)

OpImized	S-R

Graph-based

Neural	S-R

‣ Many	early-2000s	consItuency	parsers	were	~5	sentences/sec

‣ Using	S-R	used	to	mean	taking	a	performance	hit	compared	to	
graph-based,	that’s	no	longer	(quite	as)	true

Shid-Reduce	ConsItuency

Cross	and	Huang	(2016)

‣ Can	do	shid-reduce	for	consItuency	as	well,	reduce	operaIon	
builds	consItuents

combine	with	no	label	for	ternary	rules

Shid-Reduce	ConsItuency

Kitaev	and	Klein	(202020)

‣ “Tetra	tagging”:	four	possible	tags	
to	get	unlabeled	binary	trees

State-of-the-art	Dependency	Parsers

Dependency	Parsers

‣ 2012:	Maltparser	was	SOTA	was	for	transiIon-based	(~90	UAS)

‣ 2010:	Koo’s	3rd-order	parser	was	SOTA	for	graph-based	(~93	UAS)

‣ 2014:	Chen	and	Manning	got	92	UAS	with	transiIon-based	neural	
model

‣ 2005:	Eisner	algorithm	graph-based	parser	was	SOTA	(~91	UAS)

‣ 2016:	Improvements	to	Chen	and	Manning

Shid-Reduce	with	FFNNs

Danqi	Chen	and	Manning	(2014)

Parsey	McParseFace

Andor	et	al.	(2016)

‣ 94.61	UAS	on	the	Penn	Treebank	using	a	global	transiIon-based	system	
with	early	updaIng	(compared	to	95.8	for	Dozat,	93.7	for	Koo	in	2009)

‣ Feedforward	neural	nets	looking	at	words	and	POS	associated	with	
words	in	the	stack	/	those	words’	children	/	words	in	the	buffer

‣ Feature	set	pioneered	by	Chen	and	Manning	(2014),	Google	fine-tuned	it

‣ AddiIonal	data	harvested	via	“tri-training”,	form	of	self-training

(a.k.a.	SyntaxNet)

Challenges	in	other	languages

credit:	Pitler	et	al.	(2013)

‣ (Swiss	German	also	has	famous	non-context-free	construcIons)

‣ Swiss	German	example:	note	that	the	arcs	cross,	unlike	in	our	English	
examples,	which	were	almost	enIrely	projecIve

‣ As	a	result:	some	different	transiIon-based	algorithms	are	needed

MulIlingual	Parsing

Üstün	et	al.	(2020)

‣ Interest	in	
mulIlingual	
dependency	
parsing	as	far	back	
as	CoNLL	2006	
shared	task

‣ Now:	can	parse	
many	languages	
with	one	pre-
trained	model

ReflecIons	on	Structure

‣ What	is	the	role	of	it	now?

‣ To	improve	systems,	do	we	need	to	understand	what	they	do?

‣ Systems	sIll	make	these	kinds	of	judgments,	just	not	explicitly

Recap

‣ Shid-reduce	parsing	can	work	nearly	as	well	as	graph-based

‣ Arc-standard	system	for	transiIon-based	parsing

‣ Strong	learning-based	parsers,	including	mulIlingual	parsers

