

۲	Recall: PCFGs					
	Grammar (CFG)		Lexicon			
	$ROOT \rightarrow S$	1.0 NP \rightarrow NP PP	0.3	$NN \rightarrow interest$	1.0	
	$S \to NP VP$	1.0 VP \rightarrow VBP NP	0.7	NNS \rightarrow raises	1.0	
	$NP\toDTNN$	$0.2 \text{ VP} \rightarrow \text{VBP NP PP}$	0.3	$VBP \rightarrow interest$	1.0	
	$NP \to NN \; NNS$	0.5 PP \rightarrow IN NP	1.0	$VBZ \rightarrow raises$	1.0	
Context-free grammar: symbols which rewrite as one or more symbols						
 Lexicon consists of "preterminals" (POS tags) rewriting as terminals (words) 						
 CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules 						
 PCFG: probabilities associated with rewrites, normalize by source symbol 						

Dependency vs. Constituency: PP Attachment

Constituency: several rule productions need to change

Stanford Dependencies

Designed to be practically useful for relation extraction

Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas

Dependency vs. Constituency

- Dependency is often more useful in practice (models predicate argument structure)
- Slightly different representational choices:

- PP attachment is better modeled under dependency
- Coordination is better modeled under constituency
- Dependency parsers are easier to build: no "grammar engineering", no unaries, easier to get structured discriminative models working well
- Dependency parsers are usually faster
- Dependencies are more universal cross-lingually: Czech was one of the first languages for dep parsing in NLP due to its free word order

Evaluating Dependency Parsing

- UAS: unlabeled attachment score. Accuracy of choosing each word's parent (*n* decisions per sentence)
- LAS: additionally consider label for each edge
- Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- Higher-order features from Koo parser: 93 UAS
- Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

Shift-Reduce Parsing

Shift-Reduce Parsing

- Similar to deterministic parsers for compilers
 - Also called transition-based parsing
- A tree is built from a sequence of incremental decisions moving left to right through the sentence
- Stack containing partially-built tree, buffer containing rest of sentence
- Shifts consume the buffer, reduces build a tree on the stack

Test

88.3

88.6

88.5

88.7

90.5

90.7

Speed

(sent/s)

51

63

560

535

12

1013

Reflections on Structure

What is the role of it now?

- Systems still make these kinds of judgments, just not explicitly
- To improve systems, do we need to understand what they do?

Recap

- Shift-reduce parsing can work nearly as well as graph-based
- Arc-standard system for transition-based parsing
- Strong learning-based parsers, including multilingual parsers