CS388: Natural Language Processing

Lecture 2: Binary &
Classification Class

Perfectly balanced...

\

_

Greg Durrett
...As all things should be
TEXAS credit: Machine Learning Memes on Facebook
The University of Texas at Austin

Administrivia
>~ P1 autograders released soon (P1 due January 26)

> Recordings on Canvas

This Lecture

> Linear binary classification fundamentals
>~ Feature extraction
> Logistic regression

> Perceptron/SVM
» Optimization

> Sentiment analysis

Linear Binary Classification

Classification

> Datapoint x with label ¥ € {0, 1}

- Embed datapoint in a feature space f(x) € R"

but in this lecture f(x) and x are interchangeable

~

- Linear decision rule: w ' f(x) > 0

~

~

~

(No bias term b — we have
lots of features and it isn’t
needed)

Linear functions are powerful!

£%) = [x2, X2

X1X2

—
—
—
—
—
—
—
—
—
—
—
—
—
— -

o
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

fix) = [x1, x2, x12, X22, X1X2]

>~ “Kernel trick” does this for “free,” but is too expensive to use; with n
examples training is O(n~) instead of O(n - (num feats))

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

> Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

> Steps to classification:
> Turn examples like this into feature vectors
> Pick a model / learning algorithm

> Train weights on data to get our classifier

Feature Extraction

Feature Representation

this movie was great! would watch again Positive
> Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film] ...

fix)=1[0 0 1 1 0

> Very large vector space (size of vocabulary), sparse features (how many
per example?)

Feature Representation

> What are some preprocessing operations we might want to do before we
map to words?

Feature Extraction Details

> Tokenization:

“I thought it wasn’t that great!” critics complained.

“| thought it was n’t that great ! ” critics complained .
> Split out punctuation, contractions; handle hyphenated compounds
>~ Lowercasing (maybe)
> Filtering stopwords (maybe)

>~ Buildings the feature vector requires indexing the features (mapping
them to axes). Store an invertible map from string -> index

> [contains “the”] is a single feature — put this whole bracketed thing into
the indexer to give it a position in the feature space

Logistic Regression

Logistic Regression

P(y = +|z) = logistic(w ' z) ﬁ

P(y — _|_|x) __ eXp(Z?’:1 winz) j
1+ GXP(Z?:l U]ZQEZ) . -

—6 -4 -2 0 2 4 6

>~ To learn weights: maximize discriminative log likelihood of data (log P(y|x))

LHx;,Yi}i=1....n) = Zlog P(yj|lz;) corpus-level LL
J
L(;gj7 Y = _|_) — 10g P(yj — _|_|g3j) one (positive) example LL

— szxﬂ log (1 + exp (Z w,mﬂ>>

sum over features— i—1

Logistic Regression

Logistic Regression

- Update for w on positive example = x(1 — P(y = + | x)) (gradient with

| | step size = 1)
If P(+ | x) is close to 1, make very little update

Otherwise make w look more like x, which will increase P(+ | x)

- Update for w on negative example = x(—P(y = + | X))

If P(+ | x) is close to 0, make very little update
Otherwise make w look less like x, which will decrease P(+ | x)

> Let y = 1 for positive instances, y = 0 for negative instances.

> Can combine these updates as x(y — P(y = 1 | x))

g'x(l) this movie was great! would watch again + fix1) =[1 1]
(2) | expected a great movie and left happy + f(x2) = [1 1]
(3) great potential but ended up being a flop — flxs) = [1 0]

[contains great] [contains movie]

w=[0, 0] —— Ply=1] x1) =exp(0)/(1 + exp(0)) =0.5 — g=[0.5, 0.5]

w =[0.5,0.5] — P(y =1 | x2) = logistic(1) = 0.75 g =[0.25, 0.25]

w =[0.75,0.75] = P(y = 1 | x3) = logistic(0.75) = 0.67 —— g =1-0.6/,0]
P(y = +|x) = logistic(w ')
= [0.08, 0.75
w = [0.08, 0.75] pos upd: X(1 — Py =+ | x))

negupd: X(—P(y =+ | x))

Regularization

> Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

>~ Keeping weights small can prevent overfitting

> For most of the NLP models we build, explicit regularization isn’t necessary
>~ We always stop early before full convergence
> Large numbers of sparse features are hard to overfit in a really bad way

> For neural networks: dropout and gradient clipping

Logistic Regression: Summary

P(y o |£E) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

> Inference
argmax, P (y|z)
Ply=1lz) >05<w' 2 >0

> Learning: gradient ascent on the (regularized) discriminative log-likelihood.
Same interpretation as gradient descent on log-loss (in a few slides)

Perceptron/SVM

Perceptron

>~ Simple error-driven learning approach similar to logistic regression

- Decision rule: w ' f(x) > 0 Logistic Regression

- If incorrect: if positive, w «+ w + f(x) w<—w+f(x)(1—Ply=++| X))é

if negative, w «+— w — f(x) W —w—f(x)P(y =+ | x)

> Guaranteed to eventually separate the data if the data are separable

Support Vector Machines

> Many separating hyperplanes — is there a best one?

\ +
T~ \
\\\\ \ +++ 4
\\\ \
\\\\
\\\\
~ \ \\\
\ o
\ <
h \ T~ o
- - \ \\\

Support Vector Machines

> Many separating hyperplanes — is there a best one?

~
~
~
~
~
~§
~

~§
~§
~

S
~ o ~ ~~~
~*. ~ ~~~
~§~ ~ ~~~

Sl ~ S
el : ~ RS
\ (] ~

\ g

~
~
~
~
~
~
~
~§
~

~
- - e ~
~§~ ~
~
- S ~
- ~~~ ~
- S ~
~
~
~
~
~
- o
RS
~
~
~§

§~~
~

> Max-margin hyperplane found by SVMs

Perceptron and Logistic Losses

> Throughout this course: view classification as minimizing loss

> Let’s focus on loss of a positive example
0 ifw'f(x)>0

> Perceptron: loss = {
-wTf(x) if wif(x) <O
Take the gradient: no update if wif(x) > O, else update with +f(x))

~ Logistic regression: loss = — log P(+| x)

(maximizing log likelihood = minimizing negative log likelihood)

Gradient Updates on Positive Examples

Logistic regression E
f(x)(1— lOgiStiC(WTf(X)) ae |

‘(‘Hinge (SVM)

Perceptron i
f(x) if w' f(x) <0, else 0 |

SVM (ignoring regularizer)

T 0_1|)_' Logistic

f(X) if w f(x) <1, else 0 | |Perceptron] \‘(l

""" 3_ 2 1 0 1 2 3
w ' f(x)

*sign of gradients flipped to give intuitive update

Optimization

Statistical Modeling

> Four elements of a structured machine learning method:

> Model: probabilistic, max-margin, deep neural network

4

> Objective

35 F
3
2.5 F
o L

1.5 F

;
05 } \

0

-3 -2 -1 0 1 2 3

> Inference: just maxes and simple expectations so far, but there can be
other questions too (e.g. posterior over a variable)

> Optimization: gradient descent

Optimization

> Stochastic gradient descent W~ W — Qg g = 6’8 L

W

> Very simple to code up

> “First-order” technique: only relies on having gradient
~ Can avg gradient over a few examples and apply update once (minibatch)

~ Setting step size is hard (decrease when held-out performance worsens?)
—1
* Newton’s method (0-)
| W < W — > L o
> Second-order technique ow

- Optimizes quadratic instantly / |
Inverse Hessian: n x n mat, expensive!

> Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

AdaGrad

~ Optimized for problems with sparse features

> Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

1
gt;
\/e +5° g2, (smoothed) sum of squared
| gradients from all updates

W, < W; + &

> Generally more robust than SGD, requires less tuning of learning rate

> Other techniques for optimizing deep models — more later!

Duchi et al. (2011)

Implementation

>~ Supposing k active features on an instance, gradient is only nonzero
on k dimensions

0
W W — Qg g:awﬁ

» k < 100, total num features = 1M+ on many problems
> Be smart about applying updates!

> In PyTorch: applying sparse gradients only works for certain
optimizers and sparse updates are very slow.

Sentiment Analysis

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it ==+

this movie was not really very enjoyable —

>~ Bag-of-words doesn’t seem sufficient (discourse structure, negation)

> There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features # of | frequency or [[NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [806 | 808] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

>~ Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Method RT-s MPQA
MNB-uni 7719 8353
MNB-bi1

SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-umm | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Kim (2014) CNNs |81.5 89.5

720 86.3 | «—— Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be better for small data

Before neural nets had taken off
— results weren’t that great

Wang and Manning (2012)

Sentiment Analysis

. Model Accuracy Paper /| Source Code
> Stanford Sentiment
XLNet-Large (ensemble) (Yang et al., XLNet: Generalized Autoregressive Pretraining .
2019 96.8 for L Und gi Official
Tree ba N k (SST)) or Language Understanding
b . | _h tl Improving Multi-Task Deep Neural Networks
INd ry Ciassincation MT-DNN-ensemble (Liu et al., 2019) 96.5 via Knowledge Distillation for Natural Language Official
Understanding
> BESt SySte MS NOW. Snorkel MeTalL(ensemble) (Ratner et 96.2 Training Complex Models with Multi-Task Weak Official
. al., 2018) ' Supervision
large pretrained |
, Multi-Task Deep Neural Networks for Natural .
MT-DNN (Liu et al., 2019) 95.6] Understandi Official
netWOrkS anguage Understanding

Bidirectional Encoder . o
BERT: Pre-training of Deep Bidirectional

. R tati f T f 94.9 Official
> 90 -> 97 Wlth gOOd (sg\tﬁrS\ee: :I |02n§1:))m ranstormers Transformers for Language Understanding cla

NN models

Neural Semantic Encoder

, 89.7 Neural Semantic Encoders
(Munkhdalai and Yu, 2017)

Text Classification Improved by Integrating
BLSTM-2DCNN (Zhou et al., 2017) 89.5 Bidirectional LSTM with Two-dimensional Max
Pooling

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment analysis.md

Takeaways

> Logistic regression, SVM, and perceptron are closely related; we’ll use
logistic regression mostly, but the exact loss function doesn’t matter
much in practice

>~ All gradient updates: “make it look more like the right thing and less
like the wrong thing”

> Next time: multiclass classification

