CS388: Natural Language Processing

Lecture 2: Binary Classification

Greg Durrett

credit: Machine Learning Memes on Facebook

Administrivia

▶ P1 autograders released soon (P1 due January 26)

Recordings on Canvas

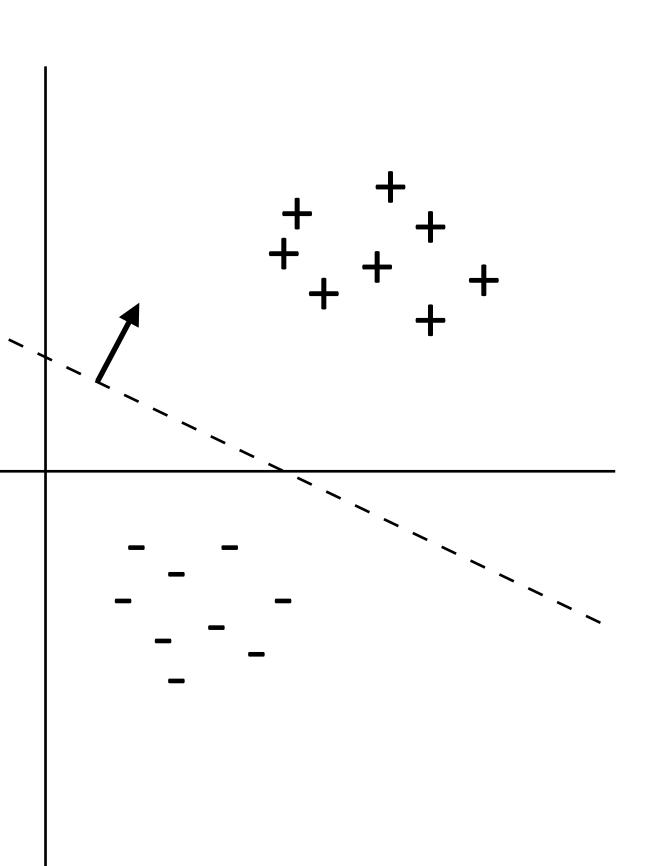
This Lecture

- Linear binary classification fundamentals
- Feature extraction
- Logistic regression
- Perceptron/SVM
- Optimization
- Sentiment analysis

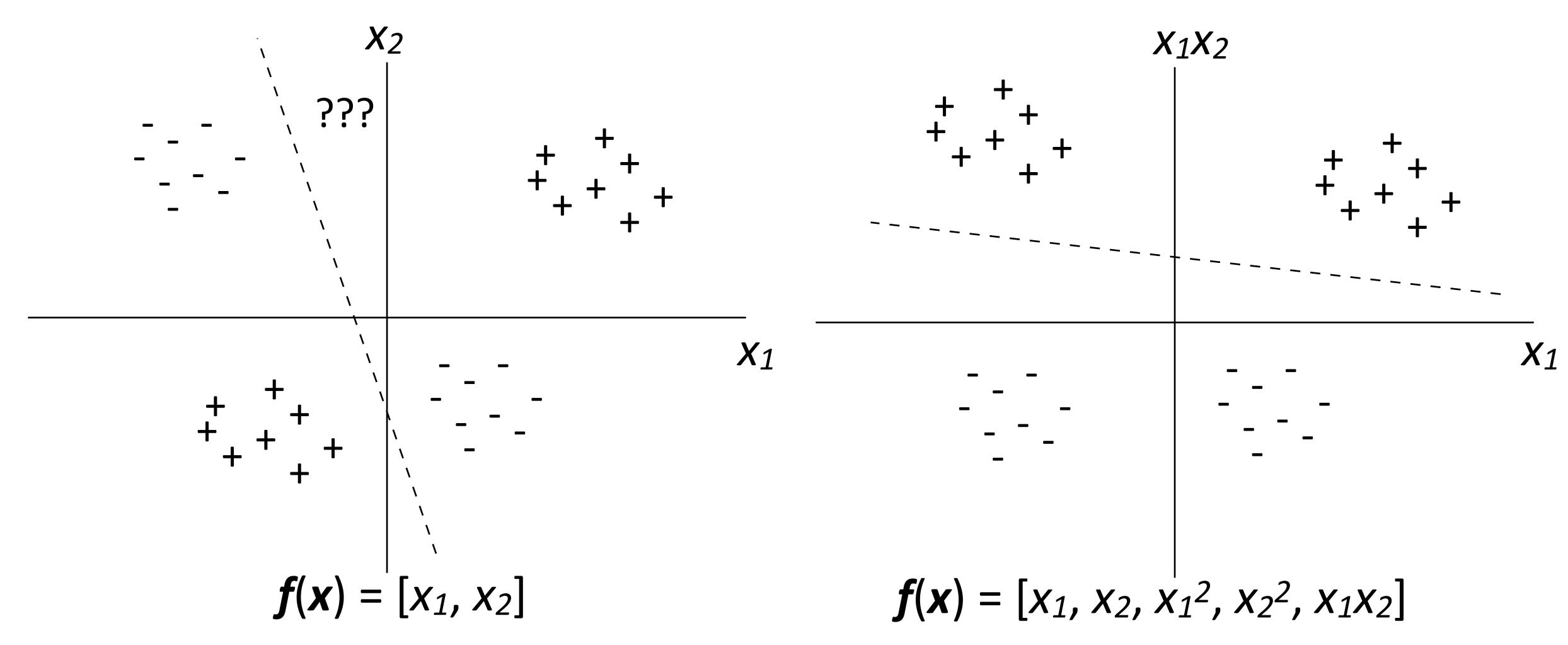
Linear Binary Classification

Classification

- ▶ Datapoint \mathbf{x} with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^n$ but in this lecture $\mathbf{f}(\mathbf{x})$ and \mathbf{x} are interchangeable
- Linear decision rule: $\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}) > 0$ (No bias term b — we have lots of features and it isn't needed)



Linear functions are powerful!



* "Kernel trick" does this for "free," but is too expensive to use; with n examples training is $O(n^2)$ instead of $O(n \cdot (\text{num feats}))$

Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was awful, I'll never watch again

Negative

- Surface cues can basically tell you what's going on here: presence or absence of certain words (great, awful)
- Steps to classification:
 - Turn examples like this into feature vectors
 - Pick a model / learning algorithm
 - Train weights on data to get our classifier

Feature Extraction

Feature Representation

this movie was great! would watch again

Positive

Convert this example to a vector using bag-of-words features

```
[contains the] [contains a] [contains was] [contains movie] [contains film] ...

position 0 position 1 position 2 position 3 position 4

f(x) = [0 	 0 	 1 	 1 	 0 	 ...
```

Very large vector space (size of vocabulary), sparse features (how many per example?)

Feature Representation

What are some preprocessing operations we might want to do before we map to words?

Feature Extraction Details

Tokenization:

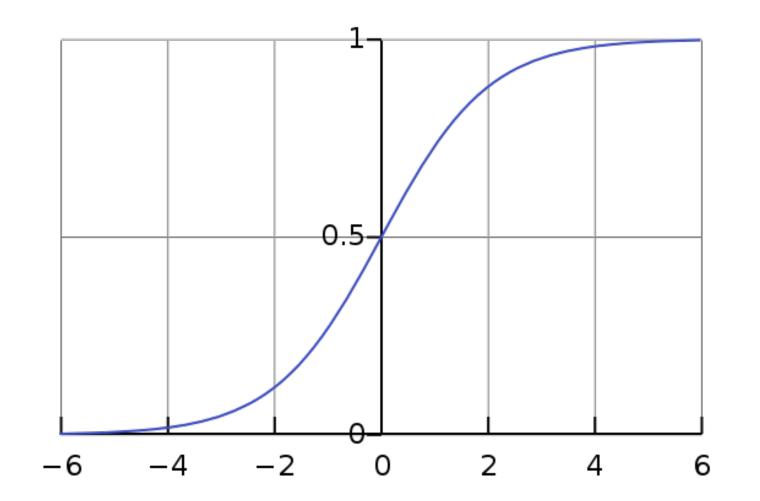
"I thought it wasn't that great!" critics complained.

"I thought it was n't that great!" critics complained.

- Split out punctuation, contractions; handle hyphenated compounds
- Lowercasing (maybe)
- Filtering stopwords (maybe)
- Buildings the feature vector requires indexing the features (mapping them to axes). Store an invertible map from string -> index
 - [contains "the"] is a single feature put this whole bracketed thing into the indexer to give it a position in the feature space

$$P(y = +|x) = logistic(w^{T}x)$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$



► To learn weights: maximize discriminative log likelihood of data (log P(y|x))

$$\mathcal{L}(\{x_j, y_j\}_{j=1,...,n}) = \sum \log P(y_j|x_j)$$
 corpus-level LL

$$\mathcal{L}(x_j,y_j=+)=\log \overset{j}{P}(y_j=+|x_j)$$
 one (positive) example LL

$$= \sum_{i=1}^{n} w_i x_{ji} - \log \left(1 + \exp \left(\sum_{i=1}^{n} w_i x_{ji} \right) \right)$$

$$\mathcal{L}(x_{j}, y_{j} = +) = \log P(y_{j} = +|x_{j}) = \sum_{i=1}^{n} w_{i} x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right)$$

$$\frac{\partial \mathcal{L}(x_{j}, y_{j})}{\partial w_{i}} = x_{ji} - \frac{\partial}{\partial w_{i}} \log \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right)$$

$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)} \frac{\partial}{\partial w_{i}} \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right)$$
deriv of log

$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_i x_{ji}\right)} x_{ji} \exp\left(\sum_{i=1}^{n} w_i x_{ji}\right)$$
 deriv of exp

$$= x_{ji} - x_{ji} \frac{\exp\left(\sum_{i=1}^{n} w_i x_{ji}\right)}{1 + \exp\left(\sum_{i=1}^{n} w_i x_{ji}\right)} = x_{ji} (1 - P(y_j = +|x_j|))$$

- Update for ${\bf w}$ on positive example $= {\bf x}(1-P(y=+\mid {\bf x}))$ (gradient with step size = 1) If P(+ | ${\bf x}$) is close to 1, make very little update

 Otherwise make ${\bf w}$ look more like ${\bf x}$, which will increase P(+ | ${\bf x}$)
- Update for $\bf w$ on negative example $= {\bf x}(-P(y=+\mid {\bf x}))$ If P(+ $\mid {\bf x}$) is close to 0, make very little update Otherwise make $\bf w$ look less like $\bf x$, which will decrease P(+ $\mid {\bf x}$)
- Let y = 1 for positive instances, y = 0 for negative instances.
- Can combine these updates as $\mathbf{x}(y P(y = 1 \mid \mathbf{x}))$

Example

- (1) this movie was great! would watch again $+ \int f(x_1) = [1]$
- (2) I expected a great movie and left happy $+ f(x_2) = [1 1]$
- (3) great potential but ended up being a flop $f(x_3) = [1 0]$

$$\mathbf{w} = [0, 0] \longrightarrow P(y = 1 \mid \mathbf{x}_1) = \exp(0)/(1 + \exp(0)) = 0.5 \longrightarrow g = [0.5, 0.5]$$

$$w = [0.5, 0.5] \rightarrow P(y = 1 \mid x_2) = logistic(1) \approx 0.75 \rightarrow g = [0.25, 0.25]$$

$$\mathbf{w} = [0.75, 0.75] \rightarrow P(y = 1 \mid \mathbf{x}_3) = \text{logistic}(0.75) \approx 0.67 \longrightarrow g = [-0.67, 0]$$

$$\mathbf{w} = [0.08, 0.75] \dots$$

$$P(y=+|x)=\operatorname{logistic}(w^{\top}x)$$
 pos upd: $\mathbf{x}(1-P(y=+\mid\mathbf{x}))$ neg upd: $\mathbf{x}(-P(y=+\mid\mathbf{x}))$

Regularization

Regularizing an objective can mean many things, including an L2norm penalty to the weights:

$$\sum_{j=1}^{m} \mathcal{L}(x_j, y_j) - \lambda ||w||_2^2$$

- Keeping weights small can prevent overfitting
- For most of the NLP models we build, explicit regularization isn't necessary
 - We always stop early before full convergence
 - Large numbers of sparse features are hard to overfit in a really bad way
 - For neural networks: dropout and gradient clipping

Logistic Regression: Summary

Model

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

Inference

$$\underset{y}{\operatorname{argmax}} P(y|x)$$

$$P(y=1|x) \ge 0.5 \Leftrightarrow w^{\top} x \ge 0$$

Learning: gradient ascent on the (regularized) discriminative log-likelihood. Same interpretation as gradient descent on log-loss (in a few slides)

Perceptron/SVM

Perceptron

Simple error-driven learning approach similar to logistic regression

- Decision rule: $\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}) > 0$
 - If incorrect: if positive, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x})$

f negative,
$$\mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\mathbf{x})$$

Logistic Regression

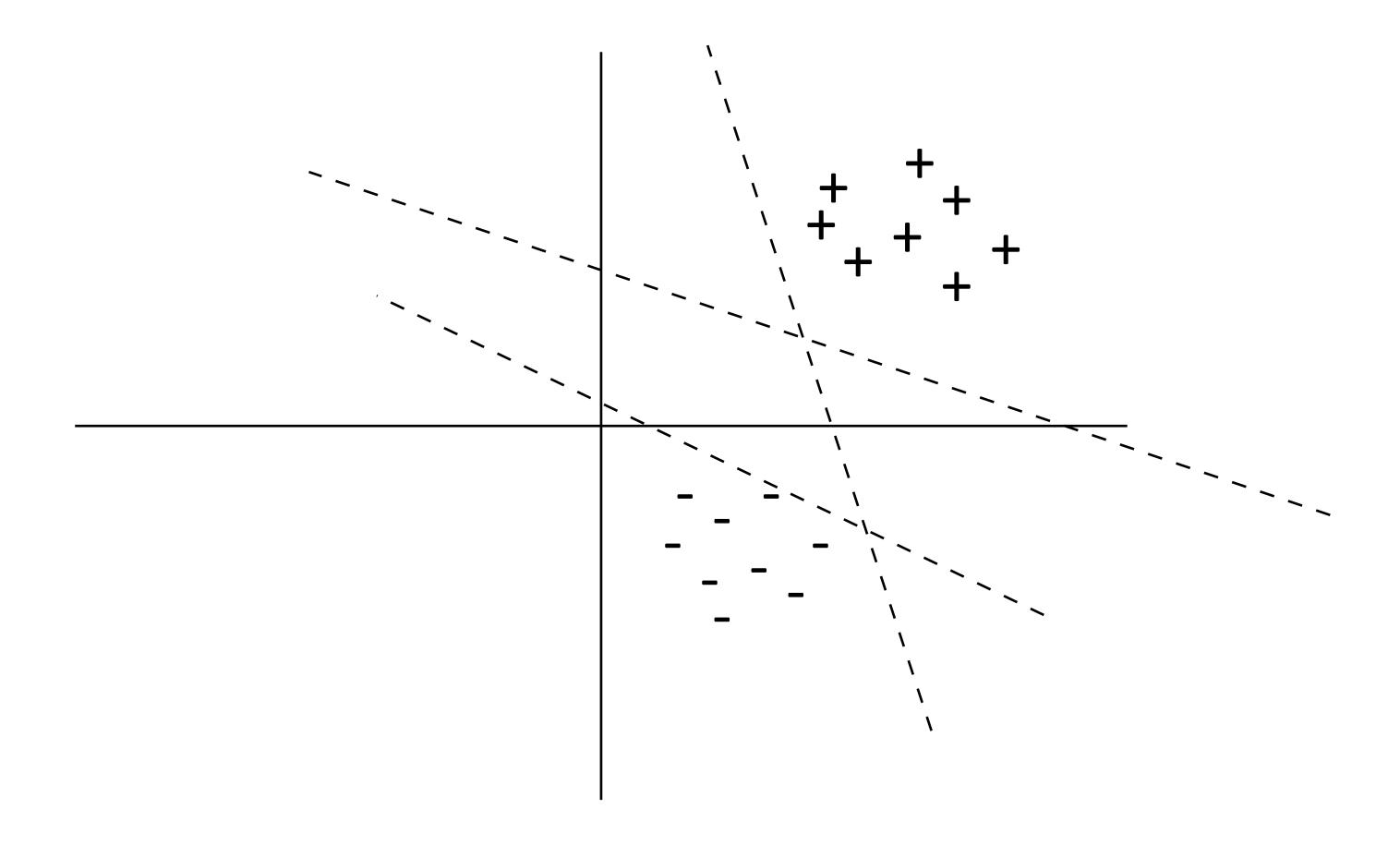
$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x})(1 - P(y = + \mid \mathbf{x}))$$

if negative,
$$\mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\mathbf{x})$$
 $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\mathbf{x})P(y = + \mid \mathbf{x})$

Guaranteed to eventually separate the data if the data are separable

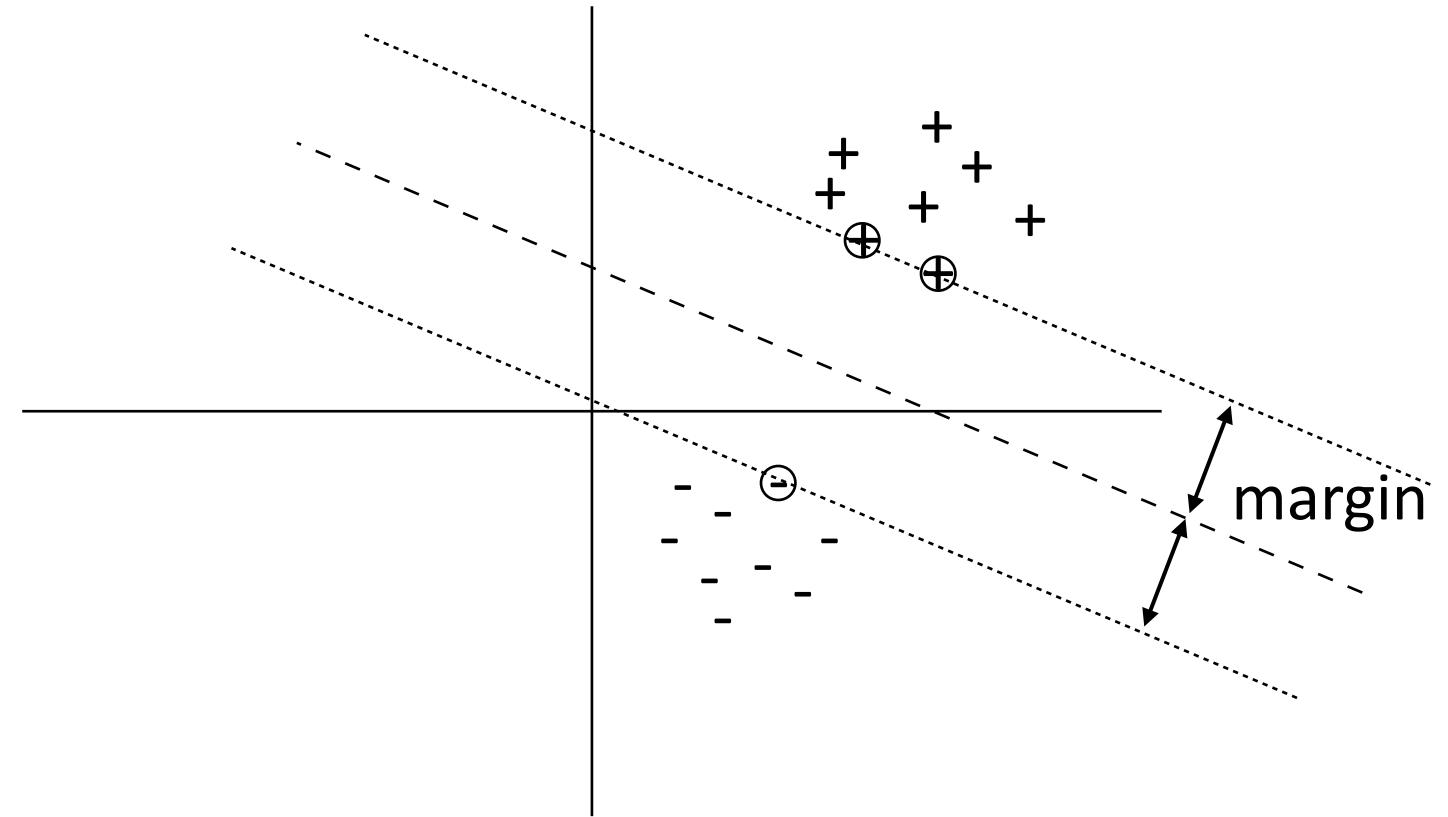
Support Vector Machines

► Many separating hyperplanes — is there a best one?



Support Vector Machines

Many separating hyperplanes — is there a best one?



Max-margin hyperplane found by SVMs

Perceptron and Logistic Losses

- Throughout this course: view classification as minimizing loss
- Let's focus on loss of a positive example

Perceptron: loss =
$$\begin{cases} 0 & \text{if } \mathbf{w}^{\mathsf{T}} f(\mathbf{x}) > 0 \\ -\mathbf{w}^{\mathsf{T}} f(\mathbf{x}) & \text{if } \mathbf{w}^{\mathsf{T}} f(\mathbf{x}) < 0 \end{cases}$$

Take the gradient: no update if $\mathbf{w}^{\mathsf{T}} f(\mathbf{x}) > 0$, else update with $+ f(\mathbf{x})$

Logistic regression: loss = — log P(+|x)
 (maximizing log likelihood = minimizing negative log likelihood)

Gradient Updates on Positive Examples

Logistic regression

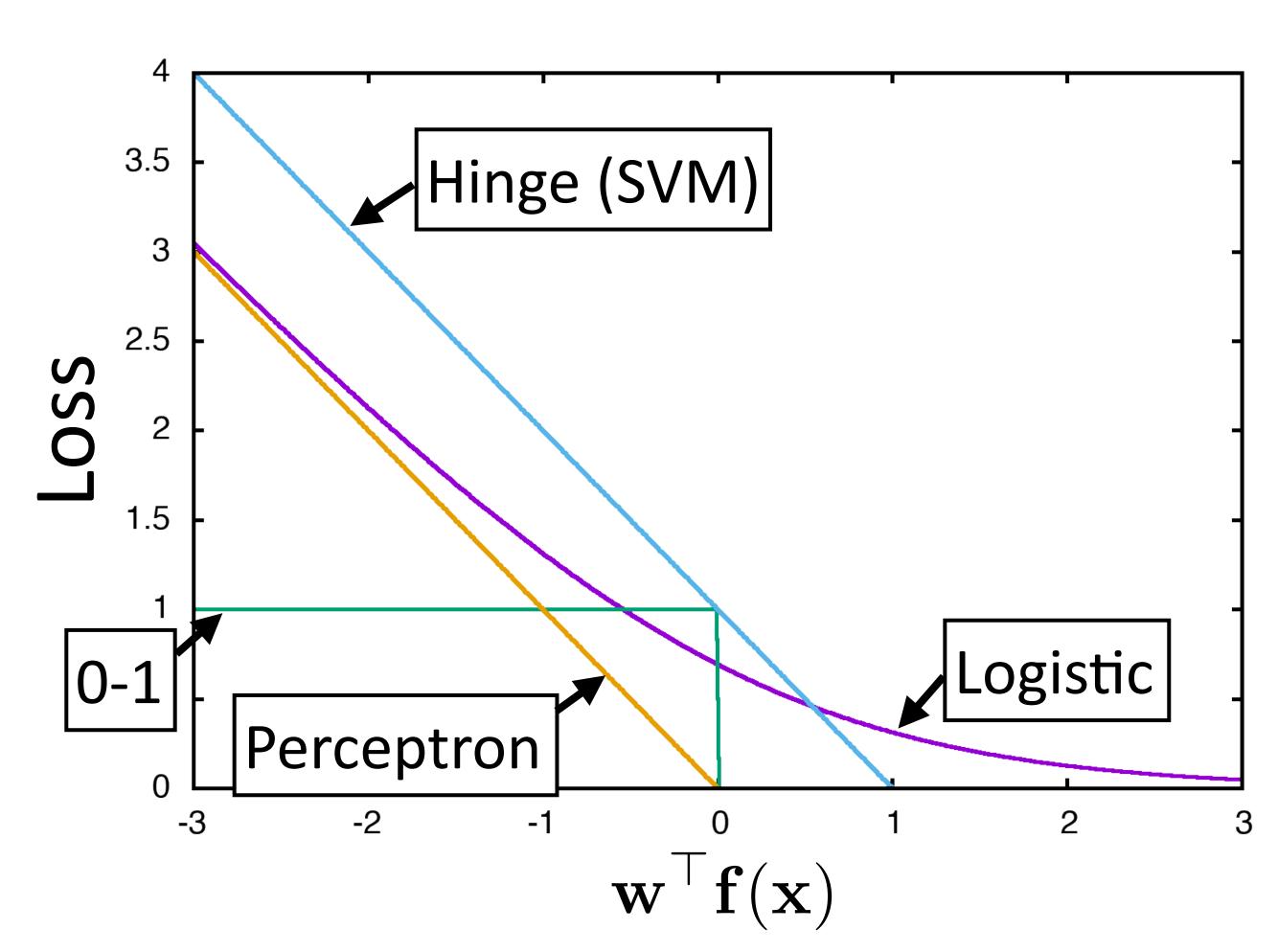
$$\mathbf{f}(\mathbf{x})(1 - \text{logistic}(\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}))$$

Perceptron

$$\mathbf{f}(\mathbf{x}) \text{ if } \mathbf{w}^{\mathsf{T}} \mathbf{f}(\mathbf{x}) < 0, \text{ else } 0$$

SVM (ignoring regularizer)

$$\mathbf{f}(\mathbf{x}) \text{ if } \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) < 1, \text{ else } 0$$

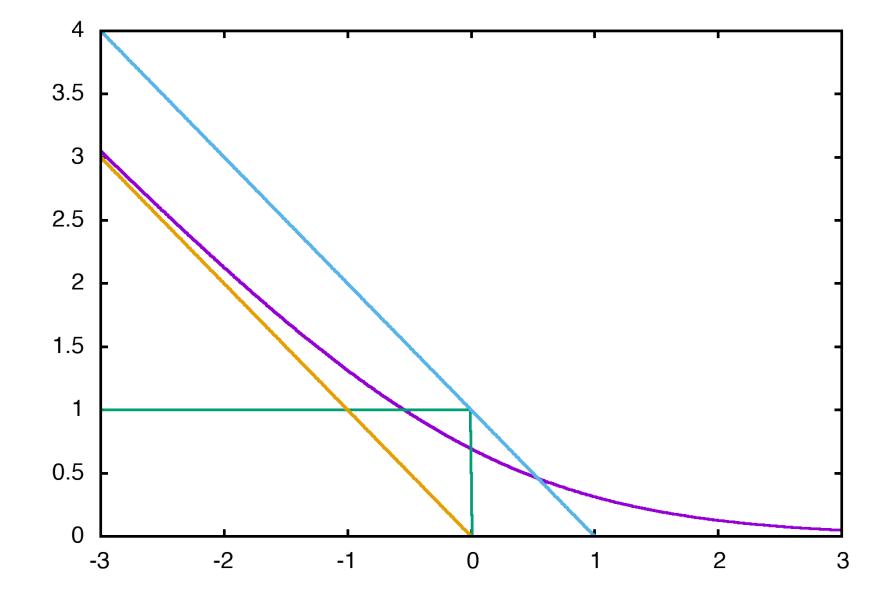


^{*}sign of gradients flipped to give intuitive update

Optimization

Statistical Modeling

- Four elements of a structured machine learning method:
 - Model: probabilistic, max-margin, deep neural network
 - Objective



- Inference: just maxes and simple expectations so far, but there can be other questions too (e.g. posterior over a variable)
- Optimization: gradient descent

Optimization

Stochastic gradient descent

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha \mathbf{g}$ $\mathbf{g} = \frac{\partial}{\partial \mathbf{x}} \mathcal{L}$

$$\mathbf{g} = rac{\partial}{\partial \mathbf{w}} \mathcal{L}$$

- Very simple to code up
- "First-order" technique: only relies on having gradient
- Can avg gradient over a few examples and apply update once (minibatch)
- Setting step size is hard (decrease when held-out performance worsens?)
- Newton's method
 - Second-order technique
 - Optimizes quadratic instantly

$$\mathbf{w} \leftarrow \mathbf{w} - \left(\frac{\partial^2}{\partial \mathbf{w}^2} \mathcal{L}\right)^{-1} \mathbf{g}$$

Inverse Hessian: *n* x *n* mat, expensive!

Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

$$w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{\tau=1}^t g_{\tau,i}^2}} g_{t_i} \qquad \text{(smoothed) sum of squared gradients from all updates}$$

- Generally more robust than SGD, requires less tuning of learning rate
- Other techniques for optimizing deep models more later!

Implementation

 Supposing k active features on an instance, gradient is only nonzero on k dimensions

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \mathbf{g}$$
 $\mathbf{g} = \frac{\partial}{\partial \mathbf{w}} \mathcal{L}$

- * k < 100, total num features = 1M+ on many problems
- Be smart about applying updates!
- In PyTorch: applying sparse gradients only works for certain optimizers and sparse updates are very slow.

this movie was great! would watch again

the movie was gross and overwrought, but I liked it

this movie was not really very enjoyable

- Bag-of-words doesn't seem sufficient (discourse structure, negation)
- There are some ways around this: extract bigram feature for "not X" for all X following the not

	Features	# of	frequency or	NB	\mathbf{ME}	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	$\operatorname{bigrams}$	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

Simple feature sets can do pretty well!

Method	RT-s	MPQA	
MNB-uni	77.9	85.3	
MNB-bi	79.0	86.3	← Naive Bayes is
SVM-uni	76.2	86.1	rtarte bayes is
SVM-bi	77.7	<u>86.7</u>	
NBSVM-uni	78.1	85.3	
NBSVM-bi	<u>79.4</u>	86.3	Ng and Jordan
RAE	76.8	85.7	can be better f
RAE-pretrain	77.7	86.4	
Voting-w/Rev.	63.1	81.7	
Rule	62.9	81.8	
BoF-noDic.	75.7	81.8	Before neural i
BoF-w/Rev.	76.4	84.1	
Tree-CRF	77.3	86.1	— results were
BoWSVM	_	_	

doing well!

1002 - NBfor small data

nets had taken off en't that great

Kim (2014) CNNs 81.5 89.5

- Stanford Sentiment
 Treebank (SST)
 binary classification
- Best systems now: large pretrained networks
- 90 -> 97 with goodNN models

Model	Accuracy	Paper / Source	Code
XLNet-Large (ensemble) (Yang et al., 2019)	96.8	XLNet: Generalized Autoregressive Pretraining for Language Understanding	Official
MT-DNN-ensemble (Liu et al., 2019)	96.5	Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding	Official
Snorkel MeTaL(ensemble) (Ratner et al., 2018)	96.2	Training Complex Models with Multi-Task Weak Supervision	Official
MT-DNN (Liu et al., 2019)	95.6	Multi-Task Deep Neural Networks for Natural Language Understanding	Official
Bidirectional Encoder Representations from Transformers (Devlin et al., 2018)	94.9	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	Official

• • •

Neural Semantic Encoder (Munkhdalai and Yu, 2017)	89.7	Neural Semantic Encoders	
BLSTM-2DCNN (Zhou et al., 2017)	89.5	Text Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling	

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment_analysis.md

Takeaways

 Logistic regression, SVM, and perceptron are closely related; we'll use logistic regression mostly, but the exact loss function doesn't matter much in practice

All gradient updates: "make it look more like the right thing and less like the wrong thing"

Next time: multiclass classification