CS388: Natural Language Processing

Lecture 2: Binary Classification

credit: Machine Learning Memes on Facebook

Administrivia

- ▶ P1 autograders released soon (P1 due January 26)
- Recordings on Canvas

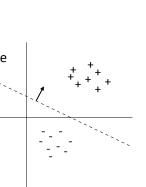
This Lecture

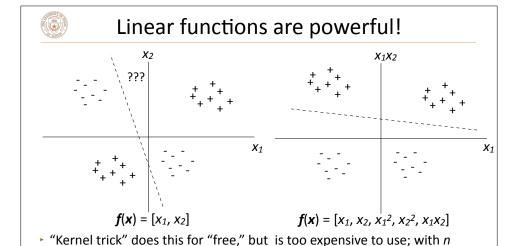
- Linear binary classification fundamentals
- Feature extraction
- Logistic regression
- Perceptron/SVM
- Optimization
- Sentiment analysis

Linear Binary Classification

Classification

- ▶ Datapoint \mathbf{x} with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^n$ but in this lecture $\mathbf{f}(\mathbf{x})$ and \mathbf{x} are interchangeable
- Linear decision rule: $\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}) > 0$ (No bias term b — we have lots of features and it isn't needed)





examples training is $O(n^2)$ instead of $O(n \cdot (\text{num feats}))$

Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was <mark>awful,</mark> I'll never <mark>watch again</mark>

Negative

- Surface cues can basically tell you what's going on here: presence or absence of certain words (great, awful)
- Steps to classification:
 - ► Turn examples like this into feature vectors
 - Pick a model / learning algorithm
 - ► Train weights on data to get our classifier

Feature Extraction

Feature Representation

this movie was great! would watch again

Positive

Convert this example to a vector using bag-of-words features

[contains *the*] [contains *a*] [contains *was*] [contains *movie*] [contains *film*] ... position 0 position 1 position 2 position 3 position 4

f(x) = [0]

0

1

1

0

Very large vector space (size of vocabulary), sparse features (how many per example?)

Feature Representation

What are some preprocessing operations we might want to do before we map to words?

Feature Extraction Details

Tokenization:

"I thought it wasn't that great!" critics complained.

"I thought it was n't that great!" critics complained.

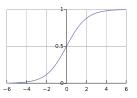
- Split out punctuation, contractions; handle hyphenated compounds
- Lowercasing (maybe)
- Filtering stopwords (maybe)
- Buildings the feature vector requires indexing the features (mapping them to axes). Store an invertible map from string -> index
 - [contains "the"] is a single feature put this whole bracketed thing into the indexer to give it a position in the feature space

Logistic Regression

Logistic Regression

$$P(y = +|x) = \operatorname{logistic}(w^{\top}x)$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$



► To learn weights: maximize discriminative log likelihood of data (log P(v|x))

$$\mathcal{L}(\{x_j,y_j\}_{j=1,\dots,n}) = \sum_j \log P(y_j|x_j) \quad \text{ corpus-level LL}$$

$$\mathcal{L}(x_j,y_j=+) = \log P(y_j=+|x_j) \quad \text{ one (positive) example LL}$$
 sum over features
$$\sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right)\right)$$

Logistic Regression

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j|) = \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right) \right)$$

$$\frac{\partial \mathcal{L}(x_j, y_j)}{\partial w_i} = x_{ji} - \frac{\partial}{\partial w_i} \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right) \right)$$

$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)} \frac{\partial}{\partial w_{i}} \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right) \qquad \text{deriv}$$
of log
$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)} x_{ji} \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right) \qquad \text{deriv}$$
of exp

$$= x_{ji} - x_{ji} \frac{\exp\left(\sum_{i=1}^{n} w_i x_{ji}\right)}{1 + \exp\left(\sum_{i=1}^{n} w_i x_{ji}\right)} = x_{ji} (1 - P(y_j = + | x_j))$$

Logistic Regression

- Update for **w** on positive example $= \mathbf{x}(1 P(y = + | \mathbf{x}))$ (gradient with step size = 1) If P(+ | x) is close to 1, make very little update Otherwise make w look more like x, which will increase $P(+ \mid x)$
- Update for **w** on negative example = $\mathbf{x}(-P(y=+\mid \mathbf{x}))$ If P(+ | x) is close to 0, make very little update Otherwise make w look less like x, which will decrease $P(+ \mid x)$
- Let y = 1 for positive instances, y = 0 for negative instances.
- Can combine these updates as $\mathbf{x}(y P(y = 1 \mid \mathbf{x}))$

Example

- (1) this movie was great! would watch again
 - - $f(x_2) = [1]$

 $f(x_1) = [1$

- (2) I expected a great movie and left happy (3) great potential but ended up being a flop
- $f(x_3) = [1]$ 01

[contains great] [contains movie] position 0 position 1

deriv

1]

1]

$$w = [0, 0] \longrightarrow P(y = 1 \mid x_1) = \exp(0)/(1 + \exp(0)) = 0.5 \longrightarrow g = [0.5, 0.5]$$

$$\mathbf{w} = [0.5, 0.5] \longrightarrow P(y = 1 \mid \mathbf{x_2}) = \text{logistic}(1) \approx 0.75 \longrightarrow g = [0.25, 0.25]$$

$$w = [0.75, 0.75] \rightarrow P(y = 1 \mid x_3) = logistic(0.75) \approx 0.67 \longrightarrow g = [-0.67, 0]$$

$$\mathbf{w} = [0.08, 0.75] \dots$$

 $P(y = +|x) = \text{logistic}(w^{\top}x)$ pos upd: $\mathbf{x}(1 - P(y = + \mid \mathbf{x}))$

neg upd: $\mathbf{x}(-P(y=+\mid \mathbf{x}))$

Regularization

Regularizing an objective can mean many things, including an L2norm penalty to the weights:

$$\sum_{j=1}^{m} \mathcal{L}(x_j, y_j) - \lambda ||w||_2^2$$

- Keeping weights small can prevent overfitting
- For most of the NLP models we build, explicit regularization isn't necessary
 - We always stop early before full convergence
 - Large numbers of sparse features are hard to overfit in a really bad way
 - For neural networks: dropout and gradient clipping

Logistic Regression: Summary

Model

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

Inference

$$\operatorname{argmax}_{y} P(y|x)$$

$$P(y=1|x) \ge 0.5 \Leftrightarrow w^{\top}x \ge 0$$

Learning: gradient ascent on the (regularized) discriminative log-likelihood. Same interpretation as gradient descent on log-loss (in a few slides)

Perceptron/SVM

Perceptron

- Simple error-driven learning approach similar to logistic regression
- Decision rule: $\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}) > 0$

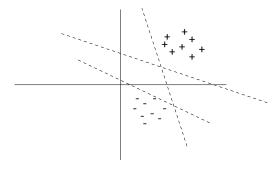
If incorrect: if positive, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x})$ $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x})(1 - P(y = + |\mathbf{x}|))$

if positive,
$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x})$$
 $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x})(1 - P(y = + \mid \mathbf{x}))$ if negative, $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\mathbf{x})$ $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\mathbf{x})P(y = + \mid \mathbf{x})$

• Guaranteed to eventually separate the data if the data are separable

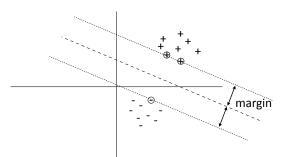
Support Vector Machines

Many separating hyperplanes — is there a best one?



Support Vector Machines

► Many separating hyperplanes — is there a best one?



Max-margin hyperplane found by SVMs

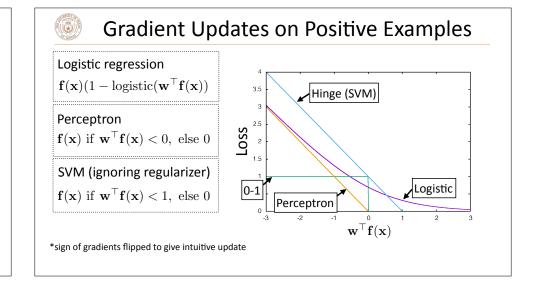
Perceptron and Logistic Losses

- ► Throughout this course: view classification as minimizing loss
- Let's focus on loss of a positive example

Perceptron: loss =
$$\begin{cases} 0 & \text{if } \mathbf{w}^{\mathsf{T}} f(\mathbf{x}) > 0 \\ -\mathbf{w}^{\mathsf{T}} f(\mathbf{x}) & \text{if } \mathbf{w}^{\mathsf{T}} f(\mathbf{x}) < 0 \end{cases}$$

Take the gradient: no update if $\mathbf{w}^{\mathsf{T}} f(\mathbf{x}) > 0$, else update with $+ f(\mathbf{x})$

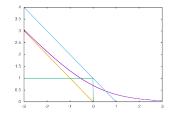
Logistic regression: loss = — log P(+|x)
 (maximizing log likelihood = minimizing negative log likelihood)



Optimization

Statistical Modeling

- ► Four elements of a structured machine learning method:
- ► Model: probabilistic, max-margin, deep neural network
- Objective



- Inference: just maxes and simple expectations so far, but there can be other questions too (e.g. posterior over a variable)
- Optimization: gradient descent

Optimization

Stochastic gradient descent

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \mathbf{g}$$
 $\mathbf{g} = \frac{\partial}{\partial \mathbf{w}} \mathcal{L}$

- Very simple to code up
- "First-order" technique: only relies on having gradient
- ► Can avg gradient over a few examples and apply update once (minibatch)
- Setting step size is hard (decrease when held-out performance worsens?)
- Newton's method

- $\mathbf{w} \leftarrow \mathbf{w} \left(\frac{\partial^2}{\partial \mathbf{w}^2} \mathcal{L}\right)^{-1} \mathbf{g}$
- ► Second-order technique

Optimizes quadratic instantly

- Inverse Hessian: *n* x *n* mat, expensive!
- Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

$$w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{\tau=1}^t g_{\tau,i}^2}} g_{t_i} \qquad \text{(smoothed) sum of squared gradients from all updates}$$

- Generally more robust than SGD, requires less tuning of learning rate
- ► Other techniques for optimizing deep models more later!

Duchi et al. (2011)

Implementation

 Supposing k active features on an instance, gradient is only nonzero on k dimensions

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \mathbf{g}$$

$$\mathbf{g} = \frac{\partial}{\partial \mathbf{w}} \mathcal{L}$$

- ► k < 100, total num features = 1M+ on many problems
- ▶ Be smart about applying updates!
- In PyTorch: applying sparse gradients only works for certain optimizers and sparse updates are very slow.

Sentiment Analysis

Sentiment Analysis

this movie was great! would watch again

the movie was gross and overwrought, but I liked it

this movie was <mark>not</mark> really very <mark>enjoyable</mark>

- Bag-of-words doesn't seem sufficient (discourse structure, negation)
- ► There are some ways around this: extract bigram feature for "not X" for all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

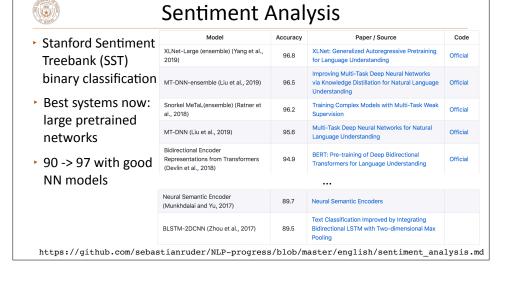
Sentiment Analysis

	Features	# of	frequency or	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis							
Method	RT-s	MPQA					
MNB-uni	77.9	85.3	•				
MNB-bi	79.0	86.3	← Naive Bayes is doing well!				
SVM-uni	76.2	86.1	riaire bayes is doing well.				
SVM-bi	77.7	<u>86.7</u>					
NBSVM-uni	78.1	85.3	N= 1 (2002) ND				
NBSVM-bi	<u>79.4</u>	86.3	Ng and Jordan (2002) — NB				
RAE	76.8	85.7	can be better for small data				
RAE-pretrain	77.7	86.4	•				
Voting-w/Rev.	63.1	81.7					
Rule	62.9	81.8					
BoF-noDic.	75.7	81.8	`Before neural nets had taken off				
BoF-w/Rev.	76.4	84.1	 results weren't that great 				
Tree-CRF	77.3	86.1	— results weren t that great				
BoWSVM	_	_					
Kim (2014) CNNs	81.5	89.5	Wang and Manning (2012)				



Takeaways

- Logistic regression, SVM, and perceptron are closely related; we'll use logistic regression mostly, but the exact loss function doesn't matter much in practice
- All gradient updates: "make it look more like the right thing and less like the wrong thing"
- Next time: multiclass classification