
CS388:	Natural	Language	Processing

Greg	Durret

Lecture	20:	
Language	and	
Code

credit:	Deepmind

Announcements

‣ Sebastian	Gerhmann	talk	on	Tuesday

This	Lecture

‣ Semantic	parsing

‣ Logical	forms

‣ Parsing	to	lambda	calculus

‣ Seq2seq	semantic	parsing

‣ Language-to-code

‣ Applications	in	software	engineering

Semantic	Parsing

Model	Theoretic	Semantics
‣ Key	idea:	can	ground	out	natural	language	expressions	in	set-
theoretic	expressions	called	models	of	those	sentences

‣ Natural	language	statement	S	=>	interpretation	of	S	that	models	it

‣ Entailment	(statement	A	implies	statement	B)	reduces	to:	in	all	worlds	
where	A	is	true,	B	is	true

She	likes	going	to	that	restaurant

‣ Interpretation:	defines	who	she	and	that	restaurant	are,	make	it	able	to	
be	concretely	evaluated	with	respect	to	a	world

‣ Our	modeling	language	is	first-order	logic

‣ This	is	a	type	of	truth-conditional	semantics:	reduce	a	sentence	to	its	
truth	conditions	(configuration	of	the	world	under	which	it	is	true)

First-order	Logic

‣ sings	is	a	predicate	(with	one	argument),	function	f:	entity	→	true/false

‣ Powerful	logic	formalism	including	things	like	entities,	relations,	and	
quantifications

Lady	Gaga	sings

‣ sings(Lady	Gaga)	=	true	or	false,	have	to	execute	this	against	some	
database	(world)

‣ Quantification:	“forall”	operator,	“there	exists”	operator

∀x	sings(x)	∨	dances(x)	→	performs(x)

“Everyone	who	sings	or	dances	performs”

Montague	Semantics

Id Name Alias Birthdate Sings?
e470 Stefani	Germanotta Lady	Gaga 3/28/1986 T
e728 Marshall	Mathers Eminem 10/17/1972 T

Database	containing	entities,	predicates,	etc.

‣ Richard	Montague:	operationalized	this	type	of	semantics	and	connected	
it	to	syntax

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

‣ Denotation:	evaluation	of	some	expression	against	this	database

[[Lady	Gaga]] = e470

denotation	of	this	string	is	an	entity

[[sings(e470)]] = True

denotation	of	this	expression	is	T/F

Montague	Semantics

NP VP

NNP NNP

S

VBP
Lady			Gaga sings

e470

λy. sings(y)
takes	one	argument	(y,	the	entity)	and	
returns	a	logical	form	sings(y)

λy. sings(y)

sings(e470)

‣ We	can	use	the	syntactic	parse	as	a	bridge	to	the	lambda-calculus	
representation,	build	up	a	logical	form	(our	model)	compositionally

function	application:	apply	this	to	e470
ID

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	(1980s):	formalism	bridging	syntax	and	semantics

‣ Syntactic	categories	(for	this	lecture):	S,	NP,	
“slash”	categories

‣ S\NP:	“if	I	combine	with	an	NP	on	my	
left	side,	I	form	a	sentence”	—	verb

NP S\NP

Eminem sings

e728 λy. sings(y)

S
sings(e728)

‣ Parallel	derivations	of	syntactic	parse	and	lambda	calculus	expression

‣ When	you	apply	this,	there	has	to	be	a	
parallel	instance	of	function	
application	on	the	semantics	side

Combinatory	Categorial	Grammar
‣ Steedman+Szabolcsi	(1980s):	formalism	bridging	syntax	and	semantics

‣ Syntactic	categories	(for	this	lecture):	S,	NP,	“slash”	categories
‣ S\NP:	“if	I	combine	with	an	NP	on	my	left	side,	I	form	a	sentence”	—	verb

‣ (S\NP)/NP:	“I	need	an	NP	on	my	right	and	then	on	my	left”	—	verb	
with	a	direct	object

NP S\NP

Eminem sings

e728 λy. sings(y)

S
sings(e728)

NP (S\NP)/NP

Oklahoma borders
e101

Texas

e89
NP

λx.λy borders(y,x)

S\NP
λy borders(y,e89)

S
borders(e101,e89)

CCG	Parsing

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

Zettlemoyer	and	Collins	(2005)

CCG	Parsing

Zettlemoyer	and	Collins	(2005)

‣ “What”	is	a	very	complex	type:	needs	a	noun	and	needs	a	S\NP	to	
form	a	sentence.	S\NP	is	basically	a	verb	phrase	(border	Texas)

‣ Why	are	we	talking	about	this	in	this	lecture?	Because	this	lambda	
calculus	expression	is	basically	executable	code.

CCG	Parsing

‣ These	question	are	compositional:	we	can	build	bigger	ones	out	of	
smaller	pieces

What	states	border	Texas?

What	states	border	states	bordering	Texas?

What	states	border	states	bordering	states	bordering	Texas?

Zettlemoyer	and	Collins	(2005)

Training	CCG	Parsers

‣ Very	hard	to	build	a	conventional	parser	for	this	problem

‣ Unlike	PCFGs,	we	don’t	know	which	words	yielded	which	fragments	of	CCG

‣ Training	data	looks	like	pairs	of	sentences	and	logical	forms

What	states	border	Texas λx. state(x) ∧ borders(x, e89)

What	borders	Texas λx. borders(x, e89)
…

Zettlemoyer	and	Collins	(2005)

Semantic	Parsing	as	Translation

Jia	and	Liang	(2016)

‣ Write	down	a	linearized	form	of	the	semantic	parse,	train	seq2seq	models	
to	directly	translate	into	this	representation	(similar	to	code	generation	
like	GitHub	Copilot)

‣ What	might	be	some	concerns	about	this	approach?	How	do	we	mitigate	
them?

“what	states	border	Texas”

lambda x (state (x) and border (x , e89)))

‣ What	are	some	benefits	of	this	approach	compared	to	grammar-based?

Semantic	Parsing	as	Translation

Jia	and	Liang	(2016)

‣ Prolog

‣ Lambda	calculus

‣ Other	DSLs

‣ Handle	all	of	these	with	uniform	machinery!

Applications

‣ GeoQuery	(Zelle	and	Mooney,	1996):	answering	questions	about	
states	(~80%	accuracy)

‣ Jobs:	answering	questions	about	job	postings	(~80%	accuracy)

‣ ATIS:	flight	search

‣ Can	do	well	on	all	of	these	tasks	if	you	handcraft	systems	and	use	
plenty	of	training	data:	these	domains	aren’t	that	rich

Code	Generation
‣ Suppose	we	are	going	to	generate	source	code	like	in	Codex/GitHub	
Copilot.	What	differs	from	generating	natural	language?

‣ In	spite	of	these	differences,	the	“obvious”	thing	is	to	do	some	pre-
training	and	see	how	far	we	get!

Generating	Code

CodeT5

Wang	et	al.	(2021)

‣ Key	idea:	code	analogue	of	T5	that	should	be	able	to	map	language	to	
source	code

CodeT5

Wang	et	al.	(2021)
‣ Predict	(a)	spans;	(c)	identifiers;	(d)	language	from	code	and	vice	versa

‣ What’s	different	from	normal	T5?

CodeT5

Wang	et	al.	(2021)

‣ Pre-trained	on	data	from	
several	language	and	NL

‣ Applied	to	several	generation	
tasks:	code	summarization,	
generation,	and	translation	
(between	programming	
languages)

‣ Also	used	for	classification	like	bug	detection	(can	be	fine-tuned	like	
BERT-style	models)

CodeT5

Wang	et	al.	(2021)

‣ Generation	task	from	
CONCODE	(Iyer	et	al.,	2018):

‣ What	do	you	think	about	this	
evaluation?

Codex

‣ GPT-3	additionally	fine-tuned	on	code	(although	they	state	that	pre-
training	on	NL	isn’t	really	helpful)

Mark	Chen	et	al.	(2021)

‣ Up	to	12B	parameter	models	fine-tuned	on	Python

‣ Modified	tokenizer	to	handle	whitespace	better.	Otherwise,	no	real	
modifications!

‣ One	challenge	is	evaluation.	How	to	go	beyond	BLEU/EM?

HumanEval
‣ Generate	standalone	Python	functions	from	docstrings	and	execute	them!

Mark	Chen	et	al.	(2021)

‣ Handwritten	benchmarks	evaluated	for	correctness	(“pass@k”:	
generate	k,	see	if	one	of	them	works)

HumanEval

Mark	Chen	et	al.	(2021)

HumanEval

‣ Another	setting:	can	we	
generate	a	bunch	of	
samples	and	then	pick	the	
correct	one?	This	would	
be	useful	for	rejection	
sampling

‣ Other	experiments:	
additional	fine-tuning	on	
competitive	programming	
problems,	docstring	
generation

Reflexion

Shinn	et	al.	(2023)https://twitter.com/johnjnay/status/1639362071807549446

Reflexion

Shinn	et	al.	(2023)https://twitter.com/johnjnay/status/1639362071807549446

‣ Interact	with	environment,	
generate	a	“reflection”	
about	that	interaction,	then	
condition	on	that	interaction	
for	the	next	round

‣ Very	little	details	about	this,	
but	very	strong	results	on	
HumanEval!

NL	Feedback

Angelica	Chen	et	al.	(2023)Improving	Code	Generation	by	Training	with	Natural	Language	Feedback

Applications	in	Software	
Development

Applications

‣ Generating	complete	code	is	nice,	but	is	very	challenging:	can’t	read	
the	user’s	mind,	if	generated	code	has	errors	they	may	be	time-
consuming	to	spot

‣ There	are	a	range	of	applications	in	software	engineering:	bug	
detection,	type	inference,	etc.	—	solving	these	subproblems	can	still	
help	save	developers	time

‣ Here:	focus	on	type	inference

Type	Inference

slide	credit:	Jiayi	Wei

Rule-based
Type Inference

works

doesn’t work

doesn’t care

• Callers
• Callees
• User-defined Types

ML-based
Type Inference

Caller

Callee

Type	Inference

slide	credit:	Jiayi	Wei

‣ Typing	this	code	snippet:

…requires	looking	at	this	function:

‣ Changes	are	non-local:	
even	with	GPT-4-length	
contexts,	you	usually	can’t	
have	a	whole	project	in	
Transformer	context

Type	Inference

slide	credit:	Jiayi	Wei Jiayi	Wei,	Durrett,	Dillig	(ICLR	2023)

‣ Can	use	CodeT5	to	predict	
the	types…but	what	
context	do	we	feed	it?

‣ Solution:	use	static	analysis	
to	determine	relevant	parts	
of	the	program

‣ Use	the	call	graph	to	
assemble	a	context	for	
CodeT5	consisting	of	
callers,	callees,	and	
skeletons	of	various	files

Type	Inference

slide	credit:	Jiayi	Wei Jiayi	Wei,	Durrett,	Dillig	(ICLR	2023)

0%

25%

50%

75%

100%

Acc. on common types Acc. on rare types

61.47

81.43

52.95

78.04

25.51

54.28

12.37

50.3454.05

Typilus Type4Py HiTyper CodeT5 TypeT5

Typilus  
(Allamanis et al.)

Type4Py  
(Mir et al.)

HiTyper  
(Peng et al.)

TypeT5 
(Wei et al.)

2020 

2022 

2022 

2023

(4000 tokens)

Other	Applications
‣ Bug	detection:	spot	bugs	in	code

‣ Comments:	code-to-comment	translation,	updating	comments	when	
code	has	changed,	and	more	(see	papers	by	Sheena	Panthaplackel)

‣ Debugging:	ask	GPT-4	to	fix	code	given	an	error	message	(see	Greg	
Brockman’s	GPT-4	demo)

‣ Program	synthesis:	have	some	specification	other	than	language	(e.g.,	
input-output	examples,	formal	spec)	and	produce	code	to	follow	that

Takeaways
‣ Language	was	being	interpreted	into	logical	forms	that	looked	like	code	
for	a	long	time	(including	in	formal	semantics)

‣ Rather	than	doing	this	with	parsers,	now	we	just	use	seq2seq	models

‣ …and	because	of	pre-training,	rather	than	using	customized	DSLs,	we	just	
use	source	code	because	models	have	seen	more	of	it

‣ Powerful	enough	models	will	almost	always	generate	code	that	
compiles.	You	don’t	need	special	constraints	on	the	output.

