CS388: Natural Language Processing

Lecture 20:
Language and
Code

Greg Durrett
TEXA credit: Deepmind

The University of Texas at Austin

Announcements

> Sebastian Gerhmann talk on Tuesday

This Lecture

> Semantic parsing

> Logical forms

> Parsing to lambda calculus
> Seq2seq semantic parsing
> Language-to-code

> Applications in software engineering

Semantic Parsing

Model Theoretic Semantics

> Key idea: can ground out natural language expressions in set-
theoretic expressions called models of those sentences

> Natural language statement S => interpretation of S that models it
She likes going to that restaurant

> Interpretation: defines who she and that restaurant are, make it able to
be concretely evaluated with respect to a world

> This is a type of truth-conditional semantics: reduce a sentence to its
truth conditions (configuration of the world under which it is true)

> Our modeling language is first-order logic

> Entailment (statement A implies statement B) reduces to: in all worlds
where A is true, B is true

First-order Logic

> Powerful logic formalism including things like entities, relations, and
guantifications

Lady Gaga sings
> sings is a predicate (with one argument), function f: entity — true/false

> sings(Lady Gaga) = true or false, have to execute this against some
database (world)

> Quantification: “forall” operator, “there exists” operator
Vvx sings(x) v dances(x) — performs(x)

“Everyone who sings or dances performs”

Montague Semantics

S
/\ Id Name Alias Birthdate Sings?
NP VP €470 Stefani Germanotta Lady Gaga 3/28/1986 T
/\ | e728 Marshall Mathers Eminem 10/17/1972 T

NNP NNP VBP

Database containing entities, predicates, etc.
Lady Gaga sings & P

> Richard Montague: operationalized this type of semantics and connected
it to syntax

> Denotation: evaluation of some expression against this database
[[Lady Gaga]l] = €470

denotation of this string is an entity

[[sings(e470)]] = True

denotation of this expression is T/F

Montague Semantics

sings(e470)

S function application: apply this to e470
ID /\
e470 NP VP Ay. sings(y)
/\ |

NNP NNP VBP

Lady Gaga sings A\y. sings(vy)
takes one argument (y, the entity) and
returns a logical form sings (y)

> We can use the syntactic parse as a bridge to the lambda-calculus
representation, build up a logical form (our model) compositionally

Combinatory Categorial Grammar

> Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
> Parallel derivations of syntactic parse and lambda calculus expression

> Syntactic categories (for this lecture): S, NP,
“slash” categories

Combinatory Categorial Grammar

» Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
» Syntactic categories (for this lecture): S, NP, “slash” categories
> S\NP: “if | combine with an NP on my left side, | form a sentence” — verb

> (S\NP)/NP: “I need an NP on my right and then on my left” — verb
with a direct object

S S
> S\NP: “if | combine with an NP on my sings(e728) borders (e101,e89)
left side, | form a sentence” — verb S
NP S\NP , e . S\NP
> When you apply this, there has to be a e728 Ay. sings(y) sings(e) y borders(y,e89)
parallel instance of function Eminem sings NP S\NP NP (S\NP)/NP NP
application on the semantics side e728 || Ay. sings(y) el01 |[Ax.Ay borders(y,x)|| €89
Eminem sings Oklahoma borders Texas
CCG Parsing CCG Parsing
What states border Texas What states border Texas
(S/(S\NP))/N N (S\NP)/NP NP (S/(S\NP))/N N (S\NP)/NP NP
AfAg . f(x) Ag(z) Az.state(z) Mz.Ay.borders(y,z) texas AfAgAx.f(z) Ag(z) Ax.state(r) Ax.Ay.borders(y,z) texas
>
(S\NP) S/(S\INP) (S\NP)

Ay.borders(y, texas)

> “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)

Zettlemoyer and Collins (2005)

Ag.\z.state(x) A g(x) Ay.borders(y, texas)

>
S
Az.state(x) A borders(x, texas)

» “What” is a very complex type: needs a noun and needs a S\NP to
form a sentence. S\NP is basically a verb phrase (border Texas)

> Why are we talking about this in this lecture? Because this lambda

calculus expression is basically executable code.)
Zettlemoyer and Collins (2005)

CCG Parsing

> These question are compositional: we can build bigger ones out of
smaller pieces

What states border Texas?
What states border states bordering Texas?

What states border states bordering states bordering Texas?

Zettlemoyer and Collins (2005)

Training CCG Parsers

> Training data looks like pairs of sentences and logical forms

What states border Texas Ax. state(x) A borders(x, e89)

What borders Texas Ax. borders(x, e89)

> Unlike PCFGs, we don’t know which words yielded which fragments of CCG

> Very hard to build a conventional parser for this problem

Zettlemoyer and Collins (2005)

Semantic Parsing as Translation

“what states border Texas”

!

lambda x (state (x) and border (x , €89)))

> Write down a linearized form of the semantic parse, train seq2seq models
to directly translate into this representation (similar to code generation
like GitHub Copilot)

> What are some benefits of this approach compared to grammar-based?

> What might be some concerns about this approach? How do we mitigate

them? . .
Jia and Liang (2016)

Semantic Parsing as Translation

GEO
x: “what is the population of iowa ?”
y: _answer (NV , (

> Prolog

_population (NV , V1) , _const (
V0 , _stateid (iowa))))
ATIS

> Lambda calculus

x: “can you list all flights from chicago to milwaukee”
y: (_lambda $0 e (_and
(

_flight $0)
(_from $0 chicago : _ci)
(_to $0 milwaukee : _ci)))
Overnight

> Other DSLs

: “when is the weekly standup”

y: (call listValue (call
getProperty meeting.weekly_standup
(string start_time)))

. . . . |
Handle all of these with uniform machinery! Jia and Liang (2016)

Applications

» GeoQuery (Zelle and Mooney, 1996): answering questions about
states (~80% accuracy)

> Jobs: answering questions about job postings (~80% accuracy)
> ATIS: flight search

> Can do well on all of these tasks if you handcraft systems and use
plenty of training data: these domains aren’t that rich

Code Generation

» Suppose we are going to generate source code like in Codex/GitHub
Copilot. What differs from generating natural language?

> In spite of these differences, the “obvious” thing is to do some pre-

training and see how far we get!

Generating Code

CodeT5

["Summarize Python: def inc_value(x):...

["Generate Python: increment value"]_L>

"increment value"
"def inc_value(x):..."

[Defect if x=0: x +=1" J

["Reﬁne: if x=0: x += 1

["Translate Python to C: if x==0: x += 1

"ifx == 0: x += 1"

'if (x==0) {x += 1;}"

Figure 1: Illustration of our CodeTS5 for code-related understanding and generation tasks.

> Key idea: code analogue of T5 that should be able to map language to

source code

Wang et al. (2021)

CodeT5

i Masked Input ! Masked Input
[l # recursive H lll # recursive binary search
binarySearch (arr, left, right, x):
mid = (left +

arr = x:

mid

Output Output

binary search right) //
[mid]

(a) Masked Span Prediction

binarySearch arr
P4 right x mid

(c) Masked Identifier Prediction

i
| [0 1010010 © U # recursive binary search

i binarySearch(arr, left, right, x):
| arr [mid] = x : at mid = (left + right) //
! arr[mid] = x:

(b) Identifier Tagging mid

recursive binary search

Bimodal Input

binarySearch (arr, left, right, x)

mid = (left + right) //
arr[mid] == x:
mid

(d) Bimodal Dual Generation

> Predict (a) spans; (c) identifiers; (d) language from code and vice versa
> What'’s different from normal T5? Wang et al. (2021)

x CodeT5

> Pre-trained on data from |

¥ dNL PLs W/ NL W/oNL Identifier
several language and N < (Ruby 49,009 110,551 32.08%
Z | JavaScript | 125,166 1,717.933 19.82%
. . Q

> Applied to several generation g/} G° 319,132 379,103 19.32%
ks: cod o &) Python 453,772 657,030 30.02%
tasks: code summarization, 3| Java 457381 1,070271 25.76%
generation, and translation © | paP 525357 398,058 23.44%
between programmin 5. C IM - 24.94%
(prog & 81 CSharp 228,496 856,375 27.85%

languages)
Total | 3,158313 5,189,321 8,347,634

> Also used for classification like bug detection (can be fine-tuned like

BERT-style models)
Wang et al. (2021)

CodeT5

> Generation task from Methods EM BLEU CodeBLEU
CONCODE (lyer et al., 2018): GPT-2 1735 2537 2969
— CodeGPT-2 1825 28.69 3271
e vect iy or inelenents Serializable £ qeGPT-adapted 20.10 3279 3598
doublel] weights; PLBART 1875 36.69 38.52
Cota 1o b somermiat somomatony: %% CodeT5-small 2155 3813 41.39

ublic void add(final doubl. 2) {
? For‘c(i:t ia= 0; ri‘a< chElzmgzis.length; i++){ +dua1-.gen 19.95 39.02 42.21
vecElements[i] += arg@; o 'J'IPHIEI'EZLS]E o 729.71§ B 73§§97 o 7378;8737 o

. CodeT5-base 2230 4073 4320
+dual-gen 22.70 41.48 44.10
+multi-task 21.15 3754 4001

> What do you think about this

evaluation? Table 3: Results on the code generation task. EM de-

notes the exact match.
Wang et al. (2021)

Codex

> GPT-3 additionally fine-tuned on code (although they state that pre-
training on NL isn’t really helpful)

> Modified tokenizer to handle whitespace better. Otherwise, no real
modifications!

> Up to 12B parameter models fine-tuned on Python
> One challenge is evaluation. How to go beyond BLEU/EM?

Mark Chen et al. (2021)

HumanEval HumanEval

> Generate standalone Python functions from docstrings and execute them! Pass Rate vs Model Size
0.7 4 — pass@1 (T+=0.2)
def solution(lst): pass@100 (T*=0.8)
"""Given a non-empty list of integers, return the sum of all of the odd elements 0.6
that are in even positions. 0.5 4
Examples é 0.4 1
solution([5, 8, 7, 1]) ==>12 v
solution([3, 3, 3, 3, 31) ==>9 £ 0.3+
solution([30, 13, 24, 321]) ==>0
win 0.2 1
return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and 1st[i]l % 2 == 1) 0.1 -
» Handwritten benchmarks evaluated for correctness (“pass@k”: S R E—— — T —— i ——rrr—
generate k, see if one of them works) 10° 106 107 108 10° 1010
Mark Chen et al. (2021) Non-embedding parameters Mark Chen et al. (2021)
HumanEval Reflexion
. . g > go to desk 2
. . Sample Rankmg Heuristics On the desk 2, you see a alarmclock 1, a bowl 1, a mug 3, a pencil 3, and a pencil 2.
> Another setti ng: can we oracle > think: Now I find a desklamp (1). Next, I need to use it.
T OK.
generate a bUnCh Of 0.7 4 gocstlring backtranslation > use desklamp 1
. —— Sum logp Nothing happens.
samples and the:*n pick the oo | — meaniom e
correct one? This would *® 7| — Random Nothing happens.
. . Status: Fail
be useful for rejection 2 o5
. c - Reflection: In this environment, my plan was to find a mug then find and use a desklamp. However,
Sampllng 0 the task says to examine the mug with the desklamp. I should have looked for the desklamp first, then
4 looked for the mug. I noticed that the desklamp was found on desk 1. In the next trial, I will go to
& 0.4 desk 1, find the lamp, then look for the mug and examine it with the desklamp.
> Other experiments: rial 2
oy . _ . 0.3 > go to desk 1
addltlonal ﬁne tUnIng on On the desk 1, you see a creditcard 3, a desklamp 1, a laptop 2, a mug 1, a pen 1, and a pencil 1.
Compeﬁﬁve programming 02 4 > think: To solve the task, I need to find and take a mug, then find and use a desklamp.
. ’ OK.
problems, docstring ul E— E— > take mug 1 from desk 1
. 10° 10! 102 You pick up the mug 1 from the desk 1. .
generation Number of samples (k) https://twitter.com/johnjnay/status/1639362071807549446 Shinn et al. (2023)

(& Reflexion
1.0
> Interact with environment, o] 088
generate a “reflection” 05
about that interaction, then 0.7 . 0.67
condition on that interaction 4/
for the next round 0.5
0.4 -
> Very little details about this, 0.3 0.26
but very strong results on 0.2
HumanEval! 0.11
0.0 PaLM CodeT+GPT-3.5 GPT-4 Reflexion+GPT-4
https://twitter.com/johnjnay/status/1639362071807549446 Shinn et al. (2023)

(& NL Feedback

Prompt Expected completion

OLD CODE:

i

Write a python function to find
the sum of the three lowest
positive numbers from a given list
of numbers.

>>> Example:
sum_three_smallest nums([10,20,30,
40,50,60,7]) = 37

wn

o
Write a python function to find
the sum of the three lowest
positive numbers from a given list
of numbers.

>>> Example:
sum_three_smallest_nums([10,20,30,
40,50,60,7]) = 37

def sum three smallest nums(lst): o

1st.sort()

e S 1) def sum three_ smallest nums(lst):

1st = [x for x in 1lst if x >

FEEDBACK: 1

This code finds the sum of the smallest 3
numbers, not the smallest 3 positive numbers.
It needs to disregard negatives and 0.

lst.sort()
return sum(lst[:3])

REFINEMENT:

Improving Code Generation by Training with Natural Language Feedback Angelica Chen et al. (2023)

Applications in Software
Development

Applications

> Generating complete code is nice, but is very challenging: can’t read
the user’s mind, if generated code has errors they may be time-
consuming to spot

> There are a range of applications in software engineering: bug
detection, type inference, etc. — solving these subproblems can still
help save developers time

> Here: focus on type inference

: Type Inference

S

Haskell

Rule-based
Type Inference A

e, JavaScript

ML-based
Type Inference

* Callers
i« Callees

1 ¢ User-defined Types : '
slide credit: Jiayi Wei e :

def predict(
: self,
H data: ChunkedDataset, H
n_seqs: Optionallint] = None, !
) —> dictlint, list[PythonType]l: '
pred_types = dict() H
: for batch in data.data: :
H batch["input_ids"] = batch["input_ids"].to(device) |
OCaml B preds, _ = self.predict_on_batch(batch, n_seqs) +
for 1, c_id in enumerate (batch["chunk_id"]):
if n_seqs is None: H
H pred_types[c_id] = preds[i] H

H else: H
H span = i * n_seqs : (i + 1) * n_segs H
' pred_types[c_id] = preds[span] H

! return pred_types H
pgthOﬂ I Callee

H def predict_on_batch(
H self, batch: dict, H
H n_segs: Optionallint] = None H
!) -> tuplellist[PythonTypel, dictl:

1 Caller '

chunks = chunk_srcs(data, window)
return model.predict(chunks, n_segs=None) H

: Type Inference

> Typing this code snippet:

chunks = chunk_srcs(data, window)
return model.predict(chunks, n_seqs=None)

...requires looking at this function:

> Changes are non-local:
even with GPT-4-length
contexts, you usually can’t
have a whole project in
Transformer context

slide credit: Jiayi Wei

def predict(
self,
data: ChunkedDataset,
n_seqs: Optionallint] = None,
) —> dict[int, list[PythonType]]:
pred_types = dict()
for batch in data.data:
batch["input_ids"] = batch["input_ids"].to(device
preds, _ = self.predict_on_batch(batch, n_segs)
for i, c_id in enumerate(batch["chunk_id"]):
if n_seqs is None:
pred_types[c_id] = preds[i
else:
span = i % n_seqs : (i + 1) % n_segs
pred_types[c_id] = preds[span]
return pred_types

: Type Inference

> Can use CodeT5 to predict
the types...but what
context do we feed it?

> Solution: use static analysis
to determine relevant parts
of the program

> Use the call graph to
assemble a context for
CodeT5 consisting of
callers, callees, and

skeletons of various files
slide credit: Jiayi Wei

Output types

<extra_id_0> ModelWrapper
<extra_id_1> TokenizedSrcSet
<extra_id_2> Optionall[int]

decodmg

| CodeT5 Deooder

CodeT5 Encoder
@@@@@@.@

tokenization

def eval_on_dataset(
InPUt COde model: <extra_id_0>,
element data: <extra_id_1>,

window_size: <extra_id_2> = None,
) e

Jiayi Wei, Durrett, Dillig (ICLR 2023)

: Type Inference

M Typilus [TypedPy HiTyper

100%
81.43

78.04
75%
50% 54.05 50.34 54.28
N II
0%

Acc. on common types

slide credit: Jiayi Wei

(4000 tokens) 2020 |@ (T/}\/rl);lrlfaniset al)

l CodeT5 [TypeT5 o2z |@ ;rl\);l’i::'e:tpzill.)
2022 |@ :;ig\ge;t al)
2023 | (TG'VZ.e!f al)

25.51
12.37

Acc. on rare types

Jiayi Wei, Durrett, Dillig (ICLR 2023)

Other Applications Takeaways

Bug detection: spot bugs in code > Language was being interpreted into logical forms that looked like code
for a long time (including in formal semantics)

Comments: code-to-comment translation, updating comments when
code has changed, and more (see papers by Sheena Panthaplackel) » Rather than doing this with parsers, now we just use seq2seq models

> Powerful enough models will almost always generate code that
Debugging: ask GPT-4 to fix code given an error message (see Greg compiles. You don’t need special constraints on the output.
Brockman’s GPT-4 demo)

> ...and because of pre-training, rather than using customized DSLs, we just

Program synthesis: have some specification other than language (e.g.)
’ use source code because models have seen more of it

input-output examples, formal spec) and produce code to follow that

