

Model Theoretic Semantics

- Key idea: can ground out natural language expressions in settheoretic expressions called *models* of those sentences
- Natural language statement S => interpretation of S that models it She likes going to that restaurant
 - Interpretation: defines who she and that restaurant are, make it able to be concretely evaluated with respect to a world
- This is a type of truth-conditional semantics: reduce a sentence to its truth conditions (configuration of the world under which it is true)
- Our modeling language is first-order logic
- Entailment (statement A implies statement B) reduces to: in all worlds where A is true, B is true

First-order Logic

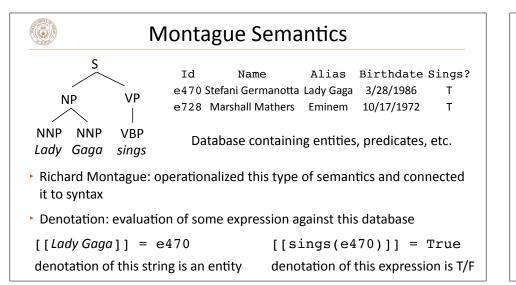
 Powerful logic formalism including things like entities, relations, and quantifications

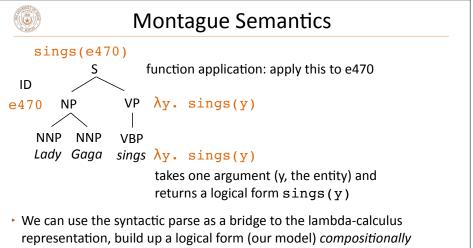
Lady Gaga sings

- sings is a *predicate* (with one argument), function f: entity \rightarrow true/false
- sings(Lady Gaga) = true or false, have to execute this against some database (*world*)
- Quantification: "forall" operator, "there exists" operator

 $\forall x \text{ sings}(x) \lor \text{dances}(x) \rightarrow \text{performs}(x)$

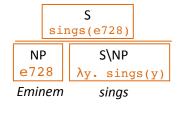
"Everyone who sings or dances performs"





Combinatory Categorial Grammar

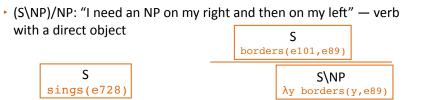
- Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- Parallel derivations of syntactic parse and lambda calculus expression
- Syntactic categories (for this lecture): S, NP, "slash" categories
- S\NP: "if I combine with an NP on my left side, I form a sentence" — verb
- When you apply this, there has to be a parallel instance of function application on the semantics side



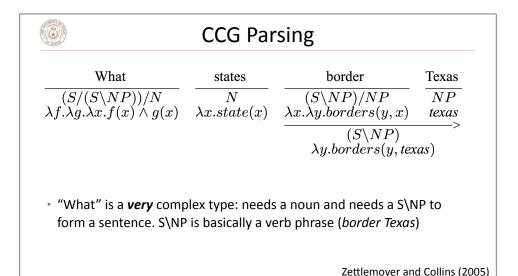
Combinatory Categorial Grammar

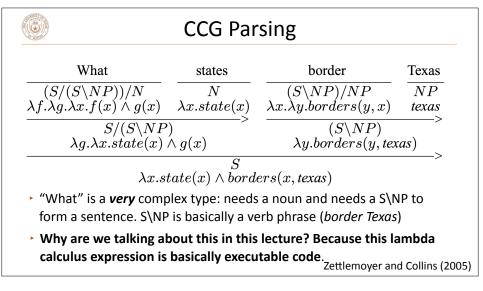
- Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- Syntactic categories (for this lecture): S, NP, "slash" categories

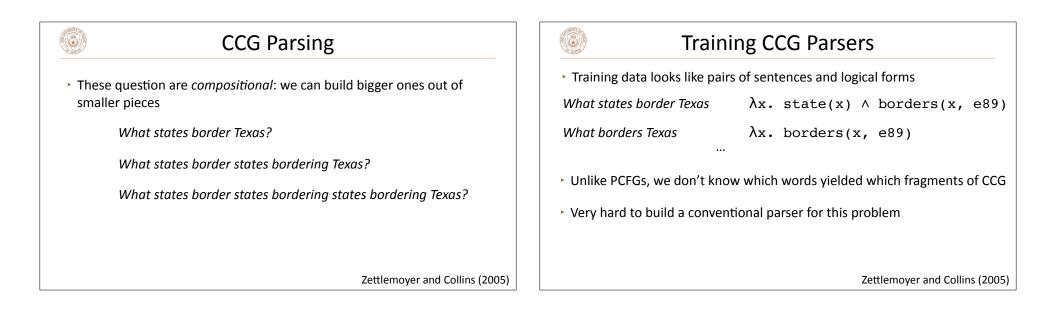
S\NP: "if I combine with an NP on my left side, I form a sentence" — verb

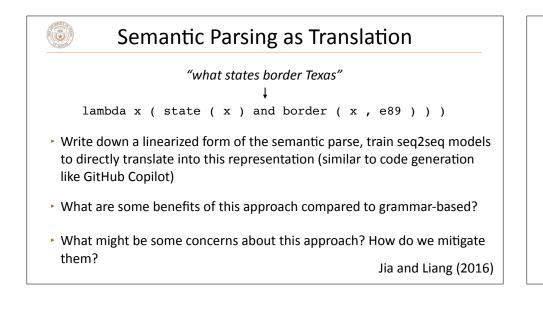


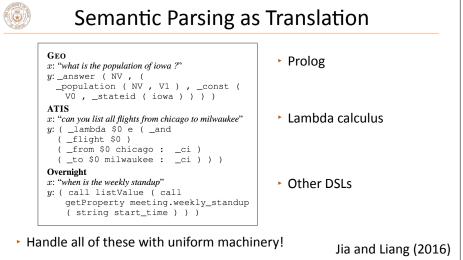
NP	S\NP	NP	(S\NP)/NP	NP	
e728	$\lambda y. sings(y)$	e101	$\lambda x . \lambda y$ borders(y,x)	e89	
Eminem	sings	Oklahoma	borders	Texas	











۲

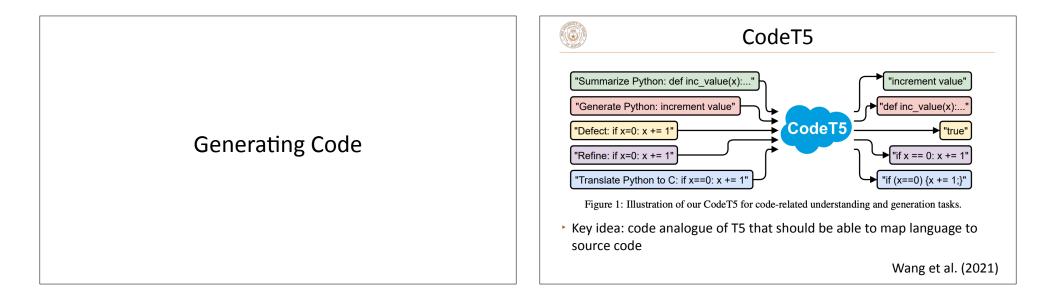
Applications

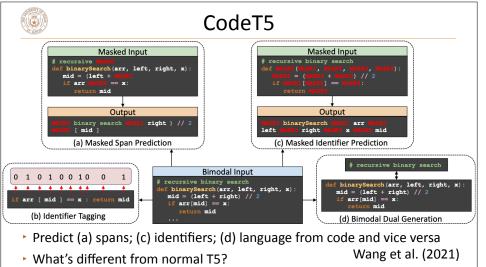
- GeoQuery (Zelle and Mooney, 1996): answering questions about states (~80% accuracy)
- Jobs: answering questions about job postings (~80% accuracy)
- ATIS: flight search
- Can do well on all of these tasks if you handcraft systems and use plenty of training data: these domains aren't that rich

Code Generation

Suppose we are going to generate source code like in Codex/GitHub Copilot. What differs from generating natural language?

In spite of these differences, the "obvious" thing is to do some pretraining and see how far we get!





CodeT5						
 Pre-trained on data from 		PLs	W/ NL	W/o NL	Identifier	
several language and NL	÷.	Ruby	49,009	110,551	32.08%	
	Ne	JavaScript	125,166	1,717,933	19.82%	
Applied to several generation	CodeSearchNet	Go	319,132	379,103	19.32%	
		Python	453,772	657,030	30.02%	
tasks: code summarization, generation, and translation (between programming		Java	457,381	1,070,271	25.76%	
		PHP	525,357	398,058	23.44%	
	} ort	С	1M	-	24.94%	
	ō۱	CSharp	228,496	856,375	27.85%	
languages)		Total	3,158,313	5,189,321	8,347,634	
 Also used for classification like the BERT-style models) 	oug c	letection	(can be fi	ne-tuned	like	
				Wang et	al. (202	

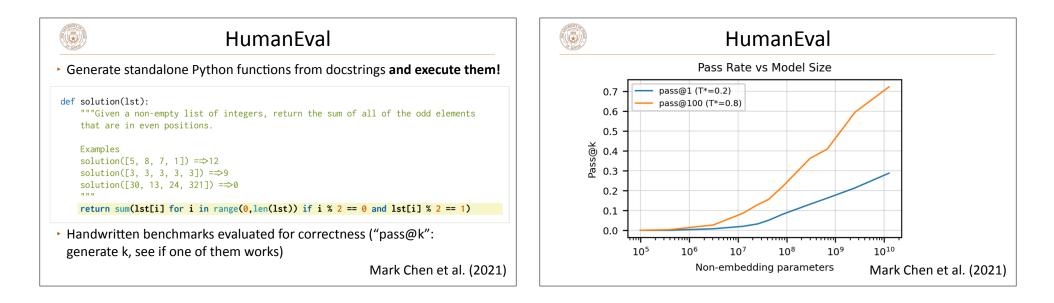
© C	CodeT5				
 Generation task from 	Methods	EM	BLEU	CodeBLEU	
CONCODE (Iyer et al., 2018):	GPT-2	17.35	25.37	29.69	
	CodeGPT-2	18.25	28.69	32.71	
<pre>ublic class SimpleVector implements Serializable { double[] vecElements;</pre>	CodeGPT-adapted	20.10	32.79	35.98	
double[] weights;	PLBART	18.75	36.69	38.52	
NL Query: Adds a scalar to this vector in place. Code to be generated automatically:	CodeT5-small	21.55	38.13	41.39	
<pre>public void add(final double arg0) { for (int i = 0; i < vecElements.length; i++){</pre>	+dual-gen	19.95	39.02	42.21	
vecElements[i] += arg0;	+multi-task	20.15	35.89	38.83	
}	CodeT5-base	$\bar{22.30}$	40.73	43.20	
	+dual-gen	22.70	41.48	44.10	
What do you think about this	+multi-task	21.15	37.54	40.01	
What do you think about this evaluation?	Table 3: Results on the code generation task. EM de notes the exact match. Wang et al. (2021				

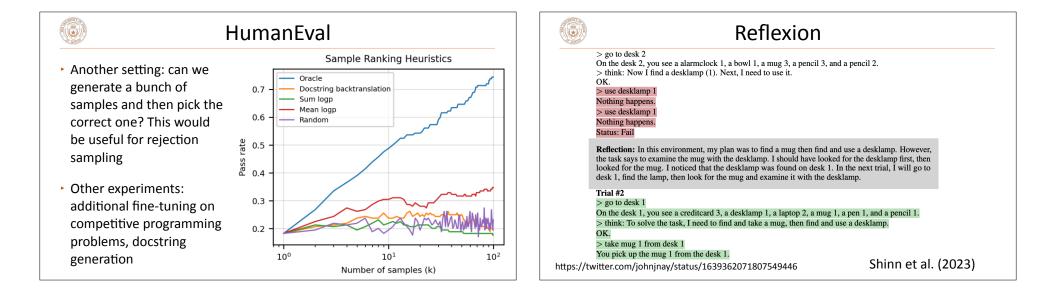
Codex

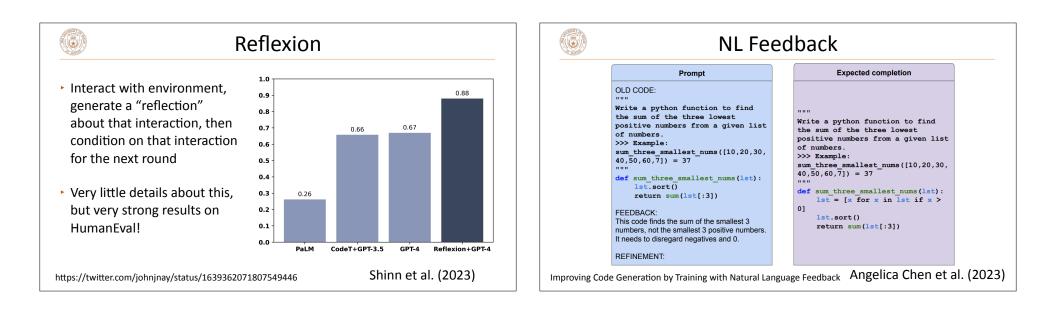
- GPT-3 additionally fine-tuned on code (although they state that pretraining on NL isn't really helpful)
 - Modified tokenizer to handle whitespace better. Otherwise, no real modifications!
- Up to 12B parameter models fine-tuned on Python

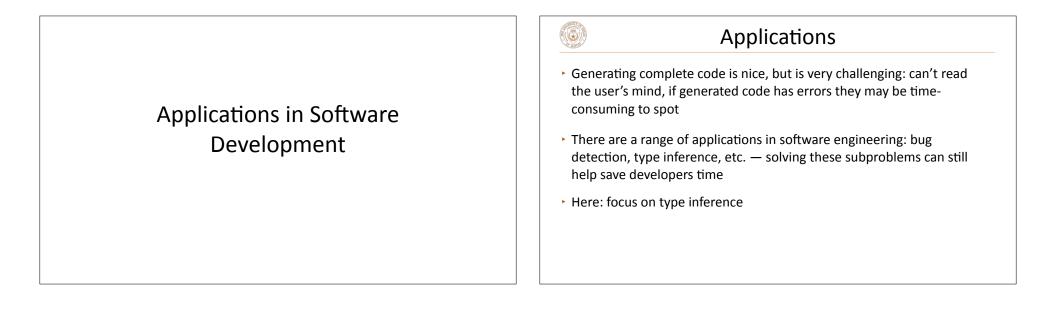
One challenge is evaluation. How to go beyond BLEU/EM?

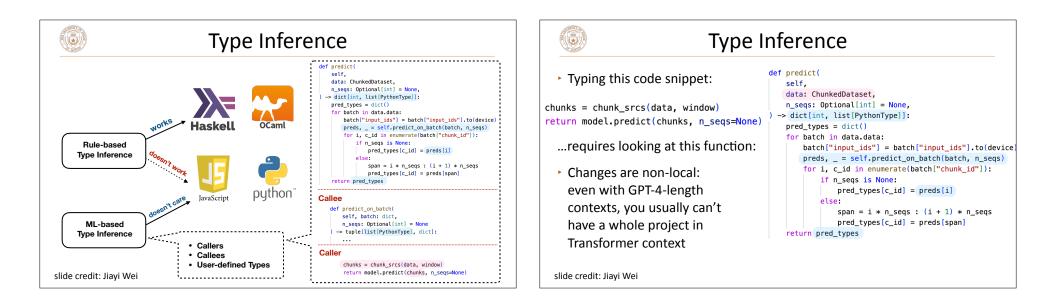
Mark Chen et al. (2021)

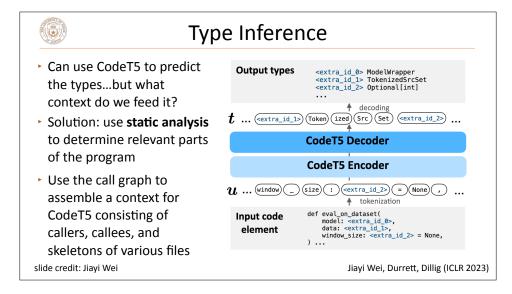


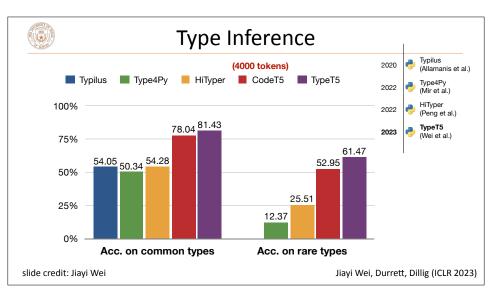












۲

Other Applications

- Bug detection: spot bugs in code
- Comments: code-to-comment translation, updating comments when code has changed, and more (see papers by Sheena Panthaplackel)
- Debugging: ask GPT-4 to fix code given an error message (see Greg Brockman's GPT-4 demo)
- Program synthesis: have some specification other than language (e.g., input-output examples, formal spec) and produce code to follow that

Takeaways

- Language was being interpreted into logical forms that looked like code for a long time (including in formal semantics)
- ▶ Rather than doing this with parsers, now we just use seq2seq models
 - Powerful enough models will almost always generate code that compiles. You don't need special constraints on the output.
- ...and because of pre-training, rather than using customized DSLs, we just use source code because models have seen more of it