CS388: Natural Language Processing

Lecture 22: Multimodality, Language Grounding

Greg Durrett

McMahan and Stone (2015)

Announcements

- FP due April 28
- Presentations on last two class days

Today’s Lecture

- Classic grounding
- Multimodality
- Language and vision models
- Language and manipulation

Classic Grounding
Language Grounding

- How do we represent language in our models?
- How did we learn these representations? What do the vectors “mean”?

Searle’s Chinese Room

- Suppose we have someone in a room with a long list of rules, dictionaries, etc. for how to translate Chinese into English. A Chinese string is passed into the room and an English string comes out. The person is not a speaker of Chinese, but merely follows the rules and looks things up in the dictionaries to produce the translation.

 - Does the person understand Chinese? Does the room? (the “system”?)
 - Searle argues that (a) the room is like an AI system producing Chinese translations; (b) the operator in the room (the AI) does not “understand” Chinese. Harnad summarizes:

 > The interpretation will not be intrinsic to the symbol system itself; it will be parasitic on the fact that the symbols have meaning for us, in exactly the same way that the meanings of the symbols in a book are not intrinsic, but derive from the meanings in our heads.

 Searle (1980)

Language Grounding

- Harnad defines a “symbol system”: we have symbols (e.g., strings) manipulated on the basis of rules, and these symbols ultimately have “semantic interpretation”

 - “Fodor (1980) and Pylyshyn (1980, 1984)...emphasize that the symbolic level (for them, the mental level) is a natural functional level of its own, with ruleful regularities that are independent of their specific physical realizations”

 - Harnad challenges the idea that fully symbolic approaches can work well.

 - Argues that “horse” is something that should be understood bottom-up through grounding. “Zebra” = “horse” + “stripes” could emerge this way, but he claims it cannot through a top-down symbolic system

 - What does it mean to “understand” the symbols that get manipulated?

Harnad (1990) *The Symbol Grounding Problem*

Language Grounding

- Bender and Koller separate form and meaning. Meaning = communicative intent. The role of the speaker/listener are crucial in language, LMs lack the underlying intent

 - They propose the “octopus” experiment to show how form alone can fail. An octopus is eavesdropping on a conversation between A and B (using deep-sea communication cables). Suddenly, the octopus decides to cut the cable and impersonate B.

 - A has an emergency and asks how to construct something with sticks to fend off a bear. The octopus can’t help because it can’t simulate this novel situation.

Bender and Koller (2020) *Climbing towards NLU*
Counterarguments

- We can’t necessarily learn semantics from predicting next characters alone without execution. Consider training on:

\[
x = 2
\]
\[
y = x + 2
\]
\[
\text{print}(y)
\]

- **However,** assertion statements are sufficient to teach us some semantics! (but this can still break down)

\[
x = 2
\]
\[
y = x + 2
\]
\[
\text{assert}(y == 4)
\]

- For language: similar argument. Assume people say true things. Consider saying a pair of sentences \(x_1, x_2;\) given enough examples, the fact that \(x_2\) should not be contradicted by \(x_1\) tells us something

Merrill et al. (2021) *Provable Limitations of Acquiring Meaning from Ungrounded Form*

Merrill et al. (2022) *Entailment Semantics can be Extracted from an Ideal Language Model*

Where are we?

- Lots of philosophy about these models!

- Nevertheless, it seems there’s a hierarchy in terms of their understanding:

```
pure LM < LM fine-tuned on supervised data
< vision+language LM < vision+language+manipulation LM < ...
```

- GPT-4 is here!
- PaLM-E (later)

Language Grounding

- There are many things that we can ground language in! Focus on vision today.
- How to associate words with sensory-motor experiences
- How to associate words with meaning representation

Multimodality, Language Grounding

Alan Turing was a British mathematician, logician, cryptanalyst, and computer scientist.

\[
\text{nationality}(\text{AT, UK}) \land \text{notable_for}(\text{AT, mathematician}) \land \text{profession}(\text{AT, logic}) \land \text{research}(\text{AT, cryptanalysis}) \land \text{notable_type}(\text{AT, compsci})
\]

some slides from Eunsol Choi
Language Grounding

- What does “yellowish green” mean?
- Formal semantics: yellowish green is a predicate. Things are either yellowish green or not. No connection to real color
- Grounding in perceptual space:

McMahan and Stone (2015)

Perception

- Visual: green = [0,1,0] in RGB
- Auditory: loud = >120 dB
- Taste: sweet = >some threshold level of sensation on taste buds
- High-level concepts:

Grounding in perceptual space:
McMahan and Stone (2015)

Learning from Interaction

1. Use feedback from control application to understand language
 - Walk across the bridge
 - Alleviate dependence on large scale annotation
 - Reward +1

2. Use language to improve performance in control applications
 - Score: 7
 - Score: 107

Other Grounding

- Temporal concepts
 - late evening = after 6pm.
 - Ground in a time interval
- Spatial Relations
 - left, on top of, in front of: how should we ground these?
- Fast, slow = describing rates of change
- Functional:
 - Jacket: keeps people warm
 - Mug: holds water
 - Focus today: grounding in images
- Size:
 - Whales are larger than lions
Grounding in Images

- How would you describe this image?
- What does the word “spoon” evoke?

Grounding Language in Images

- Syntactic categories have some regular correspondences to the world:
 - Nouns: objects
 - Verbs: actions
 - Sentences: whole scenes or things happening

- Tasks:
 - Object recognition (pick out one most salient object or detect all of them)
 - Image captioning: produce a whole sentence for an image
Language-vision Models

- Image encoder (CNN, Transformer)
- Cross-attention/joint layer
- Language encoder (LSTM, Transformer)

the girl is licking the spoon of batter

Language-vision Pre-training

(1) Contrastive pre-training

Text encoder: Transformer
Image encoder: vision Transformer
(Transformer over flattened patches)

Language-vision Pre-training

- Contrastive objective: each image should be more similar to its corresponding caption than to other captions

 \[
 \text{maximize softmax}(I_1^T T_i)[1] + \text{softmax}(I_2^T T_i)[2] + \ldots
 \]

Radford et al., 2021

Visual Question Answering

“How many horses are in this image?”

Agrawal et al., 2015
Language-vision Pre-training

1. Create dataset classifier from label text
2. Use for zero-shot prediction

CLIP: Zero-shot Results

1. Stanford Cars
 - Correct label: 2012 Honda Accord Coupe
 - Correct rank: 1/196
 - Correct probability: 63.30%

2. Country211
 - Correct: Belize
 - Correct rank: 5/211
 - Correct probability: 3.92%

Yu et al., 2022

Parti

- Autoregressive text-to-image model
 (differs from the diffusion models you may have seen, like Stable Diffusion or DALL-E)
Most models like CLIP are just vision+language. What about interaction with the world?

- Probability of taking an action decomposes as follows:
 \[
 p(c_i | i, s, \ell_\pi) \propto p(c_\pi | s, \ell_\pi) p(\ell_\pi | i)
 \]

 \[p(\text{skill possible | given world state}) \cdot p(\text{language description of skill | instruction})\]

- Individual skills are learned in advance, form affordance models for that skill
- Train a single multi-task policy that conditions on the lang description
- Do you think this is a grounded language model?
Most models like CLIP are just vision+language.

PaLM-E: An Embodied Multimodal Language Model

Given `<emb>` ... ``: Q: How to grasp blue block? A: First, grasp yellow block

- Explosion of multimodal pre-training for {video, audio, images, interaction} x text
- Many of these methods are Transformer-based
- Still haven’t seen large-scale multimodal pre-training of this form advance text-only tasks, but there’s potential!
- Impact of images on GPT-4 is unclear
• Dark green: additional performance from vision pre-training
• This graph is hard to read and doesn’t make sense...

Takeaways

• Is the lack of grounding in text-only pre-trained models a problem?
• Multimodal methods can allow us to learn representations for images as well as text and provide a path towards language grounding
• Pre-training on text and other modalities is more and more common and unlocking new capabilities for models