CS388: Natural Language Processing

Lecture 22: Multimodality, Language Grounding

Greg Durrett

TEXAS

Announcements

- ▶ FP due April 28
- Presentations on last two class days

Today's Lecture

- Classic grounding
- Multimodality
- Language and vision models
- Language and manipulation

Classic Grounding

Language Grounding

- How do we represent language in our models?
- ► How did we learn these representations? What do the vectors "mean"?

Language Grounding

- Harnad defines a "symbol system": we have symbols (e.g., strings) manipulated on the basis of rules, and these symbols ultimately have "semantic interpretation"
 - "Fodor (1980) and Pylyshyn (1980, 1984)...emphasize that the symbolic level (for them, the mental level) is a natural functional level of its own, with ruleful regularities that are independent of their specific physical realizations"
- Harnad challenges the idea that fully symbolic approaches can work well.
- Argues that "horse" is something that should be understood bottom-up through grounding. "Zebra" = "horse" + "stripes" could emerge this way, but he claims it cannot through a top-down symbolic system
- What does it mean to "understand" the symbols that get manipulated?

Harnad (1990) The Symbol Grounding Problem

Searle's Chinese Room

- Suppose we have someone in a room with a long list of rules, dictionaries, etc. for how to translate Chinese into English. A Chinese string is passed into the room and an English string comes out. The person is not a speaker of Chinese, but merely follows the rules and looks things up in the dictionaries to produce the translation.
- Does the person understand Chinese? Does the room? (the "system"?)
- Searle argues that (a) the room is like an AI system producing Chinese translations; (b)
 the operator in the room (the AI) does not "understand" Chinese. Harnad summarizes:

The interpretation will not be intrinsic to the symbol system itself: It will be parasitic on the fact that the symbols have meaning for us, in exactly the same way that the meanings of the symbols in a book are not intrinsic, but derive from the meanings in our heads.

Language Grounding

- Bender and Koller separate form and meaning.
 Meaning = communicative intent. The role of the speaker/listener are crucial in language, LMs lack the underlying intent
- They propose the "octopus" experiment to show how form alone can fail.
 An octopus is eavesdropping on a conversation between A and B (using deep-sea communication cables). Suddenly, the octopus decides to cut the cable and impersonate B.
- A has an emergency and asks how to construct something with sticks to fend off a bear. The octopus can't help because it can't simulate this novel situation.

Bender and Koller (2020) Climbing towards NLU

Counterarguments

- We can't necessarily learn semantics x = 2 from predicting next characters alone y = x + 2 without execution. Consider training on: print(y)
- However, assertion statements are x = 2 sufficient to teach us some semantics! y = x + 2 (but this can still break down) assert (y == 4)
- For language: similar argument. Assume people say true things. Consider saying a pair of sentences x_1 , x_2 ; given enough examples, the fact that x_2 should not be contradicted by x_1 tells us something

Merrill et al. (2021) Provable Limitations of Acquiring Meaning from Ungrounded Form

Merrill et al. (2022) Entailment Semantics can be Extracted from an Ideal Language Model

Where are we?

- Lots of philosophy about these models!
- Nevertheless, it seems there's a hierarchy in terms of their understanding:

Language Grounding

- ► There are many things that we can ground language in! Focus on vision today.
- How to associate words with sensory-motor experiences
- How to associate words with meaning representation

Multimodality, Language Grounding

some slides from Eunsol Choi

Language Grounding

- What does "yellowish green" mean?
- Formal semantics: yellowish green is a predicate. Things are either yellowish green or not. No connection to real color
- Grounding in perceptual space:

McMahan and Stone (2015)

Perception

- ► Visual: *green* = [0,1,0] in RGB
- ► Auditory: *loud* = >120 dB
- ► Taste: sweet = >some threshold level of sensation on taste buds
- ► High-level concepts:

cat

og

running

eating

15

13

Learning from Interaction

1. Use feedback from control application to understand language

Reward +1

Alleviate dependence on large scale annotation

2. Use language to improve performance in control applications

Score: 7

Ghosts chase and try to kill you
 Collect all the pellets

Score: 107

14

Other Grounding

- ► Temporal concepts
- *late evening* = after 6pm. Ground in a time interval
- Spatial Relations
- left, on top of, in front of: how should we ground these?
- fast, slow = describing rates of change
- Functional:

- Size:
- Jacket: keeps people warm
- Whales are larger than lions

- Mug: holds water
 - Focus today: grounding in images

Language and Vision Models

Grounding in Images

How would you describe this image?

▶ What does the word "spoon" evoke?

the girl is licking the spoon of batter

18

Grounding Language in Images

- ► Syntactic categories have some regular correspondences to the world:
 - Nouns: objects
 - Verbs: actions
 - Sentences: whole scenes or things happening
- ► Tasks:
 - Object recognition (pick out one most salient object or detect all of them)
 - ► Image captioning: produce a whole sentence for an image

Manipulation: SayCan, PaLM-E

SayCan

Probability of taking an action decomposes as follows:

$$p(c_i|i,s,\ell_\pi) \propto p(c_\pi|s,\ell_\pi) p(\ell_\pi|i)$$

p(skill possible p(language description given world state) of skill | instruction)

- ► Individual skills are learned in advance, form affordance models for that skill
- ▶ Train a single multi-task policy that conditions on the lang description
- ▶ Do you think this is a grounded language model?

Where are we today

- Explosion of multimodal pre-training for {video, audio, images, interaction} x text
- Many of these methods are Transformer-based
- Still haven't seen large-scale multimodal pre-training of this form advance text-only tasks, but there's potential!
- ▶ Impact of images on GPT-4 is unclear

Takeaways

- ► Is the lack of grounding in text-only pre-trained models a problem?
- Multimodal methods can allow us to learn representations for images as well as text and provide a path towards language grounding
- Pre-training on text and other modalities is more and more common and unlocking new capabilities for models