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Networks



Recall:	Multiclass	Classification

‣ Different	features:

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ Different	weights:

‣ Two	views	of	multiclass	classification:

‣ Logistic	regression:

Gradient	of	log	likelihood:
“increase	value	for	gold	
weight	vector,	decrease	
for	other	weight	vectors”
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This	Lecture

‣ Feedforward	neural	networks	+	backpropagation

‣ Neural	network	basics

‣ Applications

‣ Neural	network	history

‣ Implementing	neural	networks	(if	time)



Neural	Net	Basics



Neural	Networks

‣ Want	to	learn	intermediate	conjunctive	features	of	the	input

argmaxyw
>f(x, y)‣ Linear	classification:

the	movie	was	not	all	that	good

I[contains	not	&	contains	good]

‣ How	do	we	learn	this	if	our	feature	vector	is	just	the	unigram	indicators?

I[contains	not],	I[contains	good]



Neural	Networks:	XOR
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(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s	see	how	we	can	use	neural	nets 
to	learn	a	simple	nonlinear	function

‣ Inputs

‣ Output



Neural	Networks:	XOR
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y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action 
potential in neuron)



Neural	Networks:	XOR
y = a1x1 + a2x2
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“or”
y = �x1 � x2 + 2 tanh(x1 + x2)



Neural	Networks

Taken	from	http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp 
space

ShiftNonlinear 
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)



Neural	Networks

Taken	from	http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear	classifier Neural	network
…possible	because	
we	transformed	the	
space!



Deep	Neural	Networks

Taken	from	http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

}

output	of	first	layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

z = V(Wx+ b) + c

Check:	what	happens	if	no	nonlinearity?	
More	powerful	than	basic	linear	models?



Feedforward	Networks,	
Backpropagation



Logistic	Regression	with	NNs
‣ Single	scalar	probability

‣ Compute	scores	for	all	possible 
labels	at	once	(returns	vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ softmax:	exps	and	normalizes	a	
given	vector

P (y|x) = softmax(Wf(x)) ‣ Weight	vector	per	class; 
W	is	[num	classes	x	num	feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now	one	hidden	layer
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Neural	Networks	for	Classification

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

softmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	

probs



Training	Neural	Networks

‣ Maximize	log	likelihood	of	training	data

‣ i*:	index	of	the	gold	label

‣ ei:	1	in	the	ith	row,	zero	elsewhere.	Dot	by	this	=	select	ith	index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)



Computing	Gradients

‣ Gradient	with	respect	to	W

if	i	=	i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks	like	logistic	regression	with	z	as	the	features!

i

j
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L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W



Neural	Networks	for	Classification
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P (y|x) = softmax(Wg(V f(x)))
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Backpropagation:	Picture

V softmaxWf
(x
)
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P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can	forget	everything	after	z,	treat 
it	as	the	output	and	keep	backpropping



Backpropagation:	Takeaways

‣ Gradients	of	output	weights	W	are	easy	to	compute	—	looks	like	
logistic	regression	with	hidden	layer	z	as	feature	vector

‣ Can	compute	derivative	of	loss	with	respect	to	z	to	form	an	“error	
signal”	for	backpropagation

‣ Easy	to	update	parameters	based	on	“error	signal”	from	next	layer,	
keep	pushing	error	signal	back	as	backpropagation

‣ Need	to	remember	the	values	from	the	forward	computation



Applications



Sentiment	Analysis	(Project	1)
‣ Deep	Averaging	Networks:	feedforward	neural	network	on	average	of	
word	embeddings	from	input

Iyyer	et	al.	(2015)



Sentiment	Analysis	(Project	1)
Tips:

Iyyer	et	al.	(2015)

‣ Word	embedding	layer	can	be	either	frozen	or	trained	—	be	attentive	to	
this	(torch.nn.Embedding	layer	from	the	WordEmbeddings	class)

‣ As	with	the	linear	model,	most	minor	tweaks	like	dropout,	etc.	will	make	
<1%	difference.	If	you’re	10%	off	the	performance	target,	it’s	likely	due	
to	a	mis-sized	network,	poor	optimization,	bugs,	etc.

‣ Debugging:	follow	ffnn_example.py,	can	use	50-dim	embeddings	to	
debug	(they’re	smaller	and	a	bit	faster	to	use)



Sentiment	Analysis

{

{
Bag-of-words

Tree	RNNs	/	
CNNS	/	LSTMS

Wang	and	
Manning	(2012)

Kim	(2014)

Iyyer	et	al.	(2015)



NLP	with	Feedforward	Networks

Botha	et	al.	(2017)

…

Fed	raises	interest	rates	in	order	to	…

f(x)
?? em
b(raises)

‣ Word	embeddings	for	each	word	form	input

‣ ~1000	features	here	—	smaller	feature	vector	
than	in	sparse	models,	but	every	feature	fires	on	
every	example

em
b(interest)

em
b(rates)‣ Weight	matrix	learns	position-dependent	

processing	of	the	words

previous	word

curr	word

next	word

other	words,	feats,	etc.

‣ Part-of-speech	tagging	with	FFNNs



NLP	with	Feedforward	Networks

‣ Hidden	layer	mixes	these	
different	signals	and	learns	
feature	conjunctions

Botha	et	al.	(2017)



NLP	with	Feedforward	Networks
‣ Multilingual	tagging	results:

Botha	et	al.	(2017)

‣ Gillick	used	LSTMs;	this	is	smaller,	faster,	and	better



Implementing	NNs

(see	ffnn_example.py	on	the	course	website)



Computation	Graphs

‣ Computing	gradients	is	hard!	Computation	graph	abstraction	allows	us	to	
define	a	computation	symbolically	and	will	do	this	for	us

‣ Automatic	differentiation:	keep	track	of	derivatives	/	be	able	to	
backpropagate	through	each	function:

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Use	a	library	like	Pytorch	or	Tensorflow.	This	class:	Pytorch



Computation	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)

    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x))))

‣ Define	forward	pass	for



Computation	Graphs	in	Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])



Training	a	Model

Define	a	computation	graph

For	each	epoch:

Compute	loss	on	batch

For	each	batch	of	data:

Decode	test	set

Autograd	to	compute	gradients

Take	step	with	optimizer



Training	Tips



Batching

‣ Batching	data	gives	speedups	due	to	more	efficient	matrix	operations

‣ Need	to	make	the	computation	graph	process	a	batch	at	the	same	time

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch	sizes	from	1-100	often	work	well

def make_update(input, gold_label)

# input is [batch_size, num_feats]  
# gold_label is [batch_size, num_classes]

...



Training	Basics
‣ Basic	formula:	compute	gradients	on	batch,	use	first-order	optimization	
method	(SGD,	Adagrad,	etc.)

‣ How	to	initialize?	How	to	regularize?	What	optimizer	to	use?

‣ This	lecture:	some	practical	tricks.	Take	deep	learning	or	optimization	
courses	to	understand	this	further



How	does	initialization	affect	learning?

V

n	features

d	hidden	units

d	x	n	matrix m	x	d	matrix

softmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣ How	do	we	initialize	V	and	W?	What	consequences	does	this	have?

‣ Nonconvex	problem,	so	initialization	matters!



‣ Nonlinear	model…how	does	this	affect	things?

‣ If	cell	activations	are	too	large	in	absolute	value,	gradients	are	small

‣ ReLU:	larger	dynamic	range	(all	positive	numbers),	but	can	produce	
big	values,	can	break	down	if	everything	is	too	negative

How	does	initialization	affect	learning?



Initialization
1)	Can’t	use	zeroes	for	parameters	to	produce	hidden	layers:	all	values	in	
that	hidden	layer	are	always	0	and	have	gradients	of	0,	never	change

‣ Can	do	random	uniform	/	normal	initialization	with	appropriate	scale

U

"
�
r

6

fan-in + fan-out
,+

r
6

fan-in + fan-out

#
‣ Glorot	initializer:

‣ Want	variance	of	inputs	and	gradients	for	each	layer	to	be	the	same

‣ Batch	normalization	(Ioffe	and	Szegedy,	2015):	periodically	shift+rescale	
each	layer	to	have	mean	0	and	variance	1	over	a	batch	(useful	if	net	is	deep)

2)	Initialize	too	large	and	cells	are	saturated



Dropout
‣ Probabilistically	zero	out	parts	of	the	network	during	training	to	prevent	
overfitting,	use	whole	network	at	test	time

Srivastava	et	al.	(2014)

‣ Similar	to	benefits	of	
ensembling:	network	
needs	to	be	robust	to	
missing	signals,	so	it	
has	redundancy

‣ Form	of	stochastic	
regularization	

‣ One	line	in	Pytorch/Tensorflow



Adam

‣ m:	exponentially-weighted	moving	average	of	gradients

‣ v:	exponentially-weighted	moving	average	of	gradients	squared

‣ β1	=	0.9,	β2	=	0.999,	so	these	average	over	many	steps

‣ Update	is	based	on	normalized	corrected	mean,	incorporates	momentum

Kingma	and	Ba	(2015)



Optimizer

‣ Wilson	et	al.	NeurIPS	2017:	adaptive	methods	can	sometimes	perform	
badly	at	test	time	(Adam	is	in	pink,	SGD	in	black)

‣ One	more	trick:	gradient	clipping	(set	max	value	for	your	gradients)



Next	Time:	Word	Representations



Word	Representations

‣ Continuous	model	<->	expects	continuous	semantics	from	input

‣ “You	shall	know	a	word	by	the	company	it	keeps”	Firth	(1957)

‣ Neural	networks	work	very	well	at	continuous	data,	but	words	are	discrete

slide	credit:	Dan	Klein



good
enjoyable

bad

dog

great

is

‣ Want	a	vector	space	where	similar	words	have	similar	embeddings

the	movie	was	great

the	movie	was	good

~~

Word	Embeddings

‣ Goal:	come	up	with	a	way	to	
produce	these	embeddings

‣ For	each	word,	want	
“medium”	dimensional	vector	
(50-300	dims)	representing	it



Takeaways

‣ Next	class:	thinking	about	the	feature	representations:	word	
representations	/	word	vectors	(word2vec	and	GloVe)

‣ Feedforward	neural	networks	can	be	implemented	easily	in	PyTorch

‣ We	saw	that	these	are	basically	logistic	regression

‣ Easy	to	implement	backpropagation	(you	don’t	have	to	do	anything!)	
and	use	the	standard	tricks	to	get	good	performance


