CS388: Natural Language Processing

Lecture 4: Neural

Networks

Greg Durrett

TEXAS

Recall: Multiclass Classification

- ► Two views of multiclass classification:
 - ▶ Different features: $\operatorname{argmax}_{y \in \mathcal{Y}} w^{\top} f(x, y)$
 - Different weights: $\mathrm{argmax}_{y \in \mathcal{Y}} w_y^\top f(x)$
- $\text{Logistic regression:} \ \ P_{\mathbf{w}}(y = \hat{y} \mid \mathbf{x}) = \frac{\exp\left(\mathbf{w}_{\hat{y}}^{\top}\mathbf{f}(\mathbf{x})\right)}{\sum_{y'}\exp\left(\mathbf{w}_{y'}^{\top}\mathbf{f}(\mathbf{x})\right)}$

This Lecture

- Neural network history
- Neural network basics
- ► Feedforward neural networks + backpropagation
- Applications
- ► Implementing neural networks (if time)

Neural Net Basics

Neural Networks

- Linear classification: $\operatorname{argmax}_y w^{\top} f(x, y)$
- Want to learn intermediate conjunctive features of the input

the movie was **not** all that **good**I[contains not & contains good]

How do we learn this if our feature vector is just the unigram indicators?
 I[contains not], I[contains good]

Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 (generally $\mathbf{x} = (x_1, \dots, x_m)$)
- Output y (generally $\mathbf{y} = (y_1, \dots, y_n)$)

x_1	x_2	$y = x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

$$y=a_1x_1+a_2x_2$$
 X $y=a_1x_1+a_2x_2+a_3\tanh(x_1+x_2)$ "or" (looks like action potential in neuron)

Neural Networks: XOR

$$\begin{array}{c|ccccc} x_1 & x_2 & x_1 \text{ XOR } x_2 \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Neural Networks

Linear model: $y = \mathbf{w} \cdot \mathbf{x} + b$

$$y = g(\mathbf{w} \cdot \mathbf{x} + b)$$
$$\mathbf{y} = g(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Nonlinear Warp Shift transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

$$egin{aligned} & oldsymbol{y} = g(\mathbf{W} oldsymbol{x} + oldsymbol{b}) \ & \mathbf{z} = g(\mathbf{V} g(\mathbf{W} \mathbf{x} + \mathbf{b}) + \mathbf{c}) \ & \text{output of first layer} \end{aligned}$$

Check: what happens if no nonlinearity? More powerful than basic linear models?

$$\mathbf{z} = \mathbf{V}(\mathbf{W}\mathbf{x} + \mathbf{b}) + \mathbf{c}$$

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks, Backpropagation

Logistic Regression with NNs

$$P_{\mathbf{w}}(y = \hat{y} \mid \mathbf{x}) = \frac{\exp\left(\mathbf{w}_{\hat{y}}^{\top} \mathbf{f}(\mathbf{x})\right)}{\sum_{y'} \exp\left(\mathbf{w}_{y'}^{\top} \mathbf{f}(\mathbf{x})\right)}$$

$$\text{Single scalar probability}$$

$$\text{Compute scores for all possible labels at once (returns vector)}$$

$$\operatorname{softmax}([\mathbf{w}_{\hat{y}} \mathbf{1}(\mathbf{x})]_{y \in \mathcal{Y}})$$
$$\operatorname{softmax}(p)_{i} = \frac{\exp(p_{i})}{\sum_{i'} \exp(p_{i'})}$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W f(\mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wq(Vf(\mathbf{x})))$$

- labels at once (returns vector)
- softmax: exps and normalizes a given vector
- Weight vector per class; W is [num classes x num feats]
- Now one hidden layer

n features

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

$$\begin{array}{c} num_classes \\ d \text{ hidden units} \\ \hline \\ V \\ \hline \\ d \text{ x } n \text{ matrix nonlinearity} \\ num_classes \text{ x } d \\ \end{array}$$

matrix

(tanh, relu, ...)

Training Neural Networks

$$P(\mathbf{y}|\mathbf{x}) = \text{softmax}(W\mathbf{z})$$
 $\mathbf{z} = g(Vf(\mathbf{x}))$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) = \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$$

- ▶ i*: index of the gold label
- e_i : 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

Computing Gradients

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

Gradient with respect to W

$$\frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) = \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \mathbf{z}_j & \text{if } i = i^* \\ -P(y = i | \mathbf{x}) \mathbf{z}_j & \text{otherwise} \end{cases}$$

W j $\mathbf{z}_j - P(y = i|\mathbf{x})\mathbf{z}_j$ $-P(y=i|\mathbf{x})\mathbf{z}_i$

► Looks like logistic regression with **z** as the features!

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Backpropagation: Takeaways

- ► Gradients of output weights *W* are easy to compute looks like logistic regression with hidden layer *z* as feature vector
- Can compute derivative of loss with respect to z to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation
- ▶ Need to remember the values from the forward computation

Applications

Sentiment Analysis (Project 1)

 Deep Averaging Networks: feedforward neural network on average of word embeddings from input

lyyer et al. (2015)

Sentiment Analysis (Project 1)

Tips:

- Word embedding layer can be either frozen or trained be attentive to this (torch.nn.Embedding layer from the WordEmbeddings class)
- As with the linear model, most minor tweaks like dropout, etc. will make <1% difference. If you're 10% off the performance target, it's likely due to a mis-sized network, poor optimization, bugs, etc.
- Debugging: follow ffnn_example.py, can use 50-dim embeddings to debug (they're smaller and a bit faster to use)

lyyer et al. (2015)

	Sen	tim	ent	An	alysi	S	
	Model	RT	SST fine	SST bin	IMDB	Time (s)	
	DAN-ROOT DAN-RAND DAN	77.3 80.3	46.9 45.4 47.7	85.7 83.2 86.3	88.8 89.4	31 136 136	lyyer et al. (2015)
Bag-of-words	NBOW-RAND NBOW BiNB	76.2 79.0 —	42.3 43.6 41.9	81.4 83.6 83.1	88.9 89.0 —	91 91 —	Wang and
Tree RNNs / CNNS / LSTMS	RecNN* RecNTN* DRecNN	79.4 77.7 — —	43.2 45.7 49.8	82.4 85.4 86.6	91.2 — — —		Manning (2012)
	TreeLSTM DCNN* PVEC* CNN-MC	- - 81.1	50.6 48.5 48.7 47.4	86.9 86.9 87.8 88.1	89.4 92.6	2,452	Kim (2014)
	WRRBM*				89.2		

NLP with Feedforward Networks

 Hidden layer mixes these different signals and learns feature conjunctions

Botha et al. (2017)

NLP with Feedforward Networks

Multilingual tagging results:

	Acc.			
Gillick et al. (2016)	95.06	900k	-	6.63m
Small FF	94.76	241k	0.6	0.27m
+Clusters	95.56	261k	1.0	0.31m
Gillick et al. (2016) Small FF +Clusters 1/2 Dim.	95.39	143k	0.7	0.18m

Gillick used LSTMs; this is smaller, faster, and better

Botha et al. (2017)

Implementing NNs

(see ffnn_example.py on the course website)

Computation Graphs

- Computing gradients is hard! Computation graph abstraction allows us to define a computation symbolically and will do this for us
- Automatic differentiation: keep track of derivatives / be able to backpropagate through each function:

$$y = x * x \longrightarrow (y,dy) = (x * x, 2 * x * dx)$$

► Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$ class FFNN(nn.Module): def __init__(self, inp, hid, out): super(FFNN, self).__init__() self.V = nn.Linear(inp, hid) self.g = nn.Tanh() self.W = nn.Linear(hid, out) self.softmax = nn.Softmax(dim=0) def forward(self, x): return self.softmax(self.W(self.g(self.V(x))))

Computation Graphs in Pytorch

```
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x}))) \quad \text{ei*: one-hot vector} \\ \text{of the label} \\ \text{(e.g., [0, 1, 0])} \\ \text{ffnn = FFNN()} \\ \text{def make\_update(input, gold\_label):} \\ \text{ffnn.zero\_grad() # clear gradient variables} \\ \text{probs = ffnn.forward(input)} \\ \text{loss = torch.neg(torch.log(probs)).dot(gold\_label)} \\ \text{loss.backward()} \\ \text{optimizer.step()} \\
```


Training a Model

Define a computation graph

For each epoch:

For each batch of data:

Compute loss on batch

Autograd to compute gradients

Take step with optimizer

Decode test set

Training Tips

Batching

- ► Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

```
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label)
...
    probs = ffnn.forward(input) # [batch_size, num_classes]
    loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))
...
```

Batch sizes from 1-100 often work well

Training Basics

- Basic formula: compute gradients on batch, use first-order optimization method (SGD, Adagrad, etc.)
- ► How to initialize? How to regularize? What optimizer to use?
- This lecture: some practical tricks. Take deep learning or optimization courses to understand this further

How does initialization affect learning?

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

- ► How do we initialize V and W? What consequences does this have?
- Nonconvex problem, so initialization matters!

How does initialization affect learning?

▶ Nonlinear model...how does this affect things?

- ▶ If cell activations are too large in absolute value, gradients are small
- ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative

Initialization

- 1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change
- 2) Initialize too large and cells are saturated
- Can do random uniform / normal initialization with appropriate scale
- ► Glorot initializer: $U\left[-\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}}, +\sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}}\right]$
 - Want variance of inputs and gradients for each layer to be the same
- Batch normalization (Ioffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy

let

One line in Pytorch/Tensorflow

Srivastava et al. (2014)

Adam

 $g_t \leftarrow \nabla_\theta f_t(\theta_{t-1}) \text{ (Get gradients w.r.t. stochastic objective at timestep } t)$ $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t \text{ (Update biased first moment estimate)}$ $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2 \text{ (Update biased second raw moment estimate)}$ $\widehat{m}_t \leftarrow m_t/(1-\beta_1^t) \text{ (Compute bias-corrected first moment estimate)}$ $\widehat{v}_t \leftarrow v_t/(1-\beta_2^t) \text{ (Compute bias-corrected second raw moment estimate)}$ $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{\widehat{v}_t} + \epsilon) \text{ (Update parameters)}$

- ► m: exponentially-weighted moving average of gradients
- ▶ v: exponentially-weighted moving average of gradients squared
- $\beta_1 = 0.9$, $\beta_2 = 0.999$, so these average over many steps
- Update is based on normalized corrected mean, incorporates momentum

Kingma and Ba (2015)

- (e) Generative Parsing (Training Set)
- (f) Generative Parsing (Development Set)
- Wilson et al. NeurIPS 2017: adaptive methods can sometimes perform badly at test time (Adam is in pink, SGD in black)
- One more trick: gradient clipping (set max value for your gradients)

Next Time: Word Representations

Word Representations

- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input
- "You shall know a word by the company it keeps" Firth (1957)

[Finch and Chater 92, Shuetze 93, many others]

slide credit: Dan Klein

Word Embeddings

► Want a vector space where similar words have similar embeddings

the movie was great ≈ the movie was good

- Goal: come up with a way to produce these embeddings
- For each word, want "medium" dimensional vector (50-300 dims) representing it

Takeaways

- ► Feedforward neural networks can be implemented easily in PyTorch
 - ► We saw that these are basically logistic regression
 - Easy to implement backpropagation (you don't have to do anything!) and use the standard tricks to get good performance
- Next class: thinking about the feature representations: word representations / word vectors (word2vec and GloVe)