CS388: Natural Language Processing

Lecture 4: Neural

Networks
Greg Durrett i e
TEXA i ot

The University of Texas at Austin

Recall: Multiclass Classification
» Two views of multiclass classification:
> Different features: argmaxyewaf(x, Y)

- Different weights: argmaxyeyw;rf(x)
exp (wa(x))

Zy, exp (WJ, f(x))

> Logistic regression: P, (y =g | x) =

Gradient of log likelihood: 0
“increase value for gold 9w,
weight vector, decrease 1o}
for other weight vectors” dw;

£(x,y) = £)Py | x) ~ 1)

£6x9,y) = D) Py (5 | %)

This Lecture

> Neural network history

> Neural network basics

> Feedforward neural networks + backpropagation
> Applications

> Implementing neural networks (if time)

Neural Net Basics

Neural Networks

> Linear classification: argmaxwaf(m, Y)

Neural Networks: XOR

> Let’s see how we can use neural nets

to learn a simple nonlinear function L2
> Want to learn intermediate conjunctive features of the input 1 0
» Inputs 1, o
the movie was not all that good (generally x = (z1,...,2m))
0 1
[[contains not & contains good] - Output ¥ | ' L1
. . N (generally y = (41,) 21 Ty y==z1 XOR 2
> How do we learn this if our feature vector is just the unigram indicators? 0 0 0
I[contains not], I[contains good] 0 1 1
1 0 1
1 1 0
Neural Networks: XOR Neural Networks: XOR
T2 . Y = a1x1 + a2 X T2 Y = a171 + a2 X
11 0.~ 1 0
Y = a171 + azxs + aztanh(z1 + 22) Yy = a121 + agxs + aztanh(z) + 1)
‘, ------------ “or” y = —x1 — x2 + 2tanh(z; + x2)
9 ™1 1 (looks like action 0 1 1 “or”
¥ * potential in neuron) |
r1 x2 x1 XOR z9 r1 T2 x1 XOR 29
0 0 0 0 0 0
0 1 1 2 E] 1 2 0 1 1
1 0 1 I 1 0 1
1 1 0 4 1 1 0

Neural Networks

Linear model: Yy = W - X+ b

y:g(w-x—l—b)
g(Wx +b)

NN

Nonlinear Warp Shift
transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

...possible because
Linear classifier Neural network we transformed the
space!

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

y=g9(Wz +b)

z=g(Vy+c) AR

7= g(Vg(Wx +b) +c) / \/)

H_J o / / /
output of first layer |
05 \ >

Check: what happens if no nonlinearity? AN
More powerful than basic linear models? =

=V(Wx+b)+c

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropagation

Logistic Regression with NNs

€Xp (WTf(X)> > Single scalar probability

Puly=19]x)= -
2y eXP (x >/ Compute scores for all possible
P(y|x) = softmax([f(x)]yey) labels at once (returns vector)

softmax(p); = exp(pi) > softmax: exps and normalizes a
> exp(pir) given vector

P(y|x) = softmax(W f(x)) > Weight vector per class;
W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) > Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

] d hidden units

g
| dxnmatrix nonlinearity ~ num_classes x d
n features (tanh, relu, ...) matrix

num_classes
probs

= ®
B v e w2

Training Neural Networks

P(y|x) = softmax(Wz) z = g(Vf(x))

> Maximize log likelihood of training data

L(x,i*) =log P(y = i*|x) = log (softmax(Wz) - ;)
> i*:index of the gold label

> e;: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,i")=Wz-e;x — logZeXp(Wz) -€;
J

Computing Gradients

L(x,7")=Wz-e;x —log Z exp(Wz) - e;

J
> Gradient with respect to W W j
o i) zj — P(y =ilx)z; ifi=i* i
X,1) = z; — P(y = i|x)z;
oWij P(y =i|x)z; otherwise H = b
—P(y = ilx)z;

> Looks like logistic regression with z as the features!

Neural Networks for Classification

P(y[x) = softmax(Wg(V f(x)))

"
B v M HeH W Hemmel

ow

> Can forget everything after z, treat

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

z Vo .

err(z)
AN

it as the output and keep backpropping

Backpropagation: Takeaways

> Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

> Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

> Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

> Need to remember the values from the forward computation

Applications

Sentiment Analysis (Project 1)

> Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax
hy = f(Wa - hy + ba)

h1 = f(W1 -av + bl)

CIT T T I T T T
Predator is a masterpiece
o e c3 cs lyyer et al. (2015)

Sentiment Analysis (Project 1)

Tips:
> Word embedding layer can be either frozen or trained — be attentive to
this (torch.nn.Embedding layer from the WordEmbeddings class)

> As with the linear model, most minor tweaks like dropout, etc. will make
<1% difference. If you’re 10% off the performance target, it’s likely due
to a mis-sized network, poor optimization, bugs, etc.

> Debugging: follow ffnn_example.py, can use 50-dim embeddings to
debug (they’re smaller and a bit faster to use)

lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
fine bin (s)
DAN-ROOT — 469 857 — 31
DAN-RAND 773 454 832 888 136
[DAN 803 477 863 894 136] lyyeretal.(2015)

NBOW-RAND 762 423 814 889 91
NBOW 790 436 836 890 9l
Bag-of-words BiNB 419 83.1

— Wangand
[NBSVM-bi___ 794 — — 912 | g

Manning (2012)

RecNN* 777 432 824 — —
RecNTN* — 457 854 — —
DRecNN — 498 866 — 431
Tree RNNs / TreeLSTM — 506 869 — —
CNNS / LSTMS DCNN* — 485 869 894 —
PVEC* — 487 878 926 —

[eNN-MC 811 474 881 — 2452] Kim (2014)
WRRBM* — - — 892 —

NLP with Feedforward Networks

> Part-of-speech tagging with FFNNs f

~—
s

??

Fed raises interest rates in order to ... previous word

(sasips)quis

> Word embeddings for each word form input

K|

> ~1000 features here — smaller feature vector ~ currword || %
than in sparse models, but every feature fires on 2
every example 3
next word || 3

> Weight matrix learns position-dependent

processing of the words other words, feats, etc. L
Botha et al. (2017)

NLP with Feedforward Networks

P(y)
[oooooc?ooooo] hi

e
'
'

[©000)(0000)0000)0CO00): ko
REEES SRR F T T

® @ ® ®

> Hidden layer mixes these
different signals and learns
feature conjunctions

u
no q que

ue ueu
eu

Ebvigrams at Eigrams

no queue at

Botha et al. (2017)

NLP with Feedforward Networks

> Multilingual tagging results:

Model | Ace. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k - 6.63m
Small FF 9476 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.3Im
% Dim. 9539 143k 0.7 0.18m

> Gillick used LSTMs; this is smaller, faster, and better

Botha et al. (2017)

Implementing NNs

(see ffnn_example.py on the course website)

Computation Graphs

» Computing gradients is hard! Computation graph abstraction allows us to
define a computation symbolically and will do this for us

» Automatic differentiation: keep track of derivatives / be able to
backpropagate through each function:

y=x*x = (y,dy) = (x * x, 2 * x * dx)
codegen

> Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

» Define forward pass for P(y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
def init (self, inp, hid, out):
super (FFNN, self). init ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()
self.W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))

Computation Graphs in Pytorch
ei*: one-hot vector
P(y|x) = softmax(Wg(V f(x))) of the label
(e.g., [0, 1, 01)
ffnn = FFNN() //
def make update(input, gold label):
ffnn.zero grad() # clear gradient variables
probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)
loss.backward()
optimizer.step()

Training a Model

Define a computation graph
For each epoch:
For each batch of data:
Compute loss on batch
Autograd to compute gradients
Take step with optimizer

Decode test set

Training Tips

Batching
> Batching data gives speedups due to more efficient matrix operations

> Need to make the computation graph process a batch at the same time

input is [batch_size, num feats]
gold_label is [batch_size, num_classes]
def make update(input, gold label)
probs = ffnn.forward(input) # [batch _size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well

Training Basics

> Basic formula: compute gradients on batch, use first-order optimization
method (SGD, Adagrad, etc.)

> How to initialize? How to regularize? What optimizer to use?

> This lecture: some practical tricks. Take deep learning or optimization
courses to understand this further

How does initialization affect learning?
P(y|x) = softmax(Wg(V f(x)))

d hidden units

= "
A v HoHeH w Hemma 2
g

LI dxnmatrix honlinearity
n features (tanh, relu, ...)

> How do we initialize V and W? What consequences does this have?

m x d matrix

> Nonconvex problem, so initialization matters!

How does initialization affect learning?

> Nonlinear model...how does this affect things?

1

=

> If cell activations are too large in absolute value, gradients are small

> ReLU: larger dynamic range (all positive numbers), but can produce
big values, can break down if everything is too negative

Initialization
1) Can’t use zeroes for parameters to produce hidden layers: all values in
that hidden layer are always 0 and have gradients of 0, never change

2) Initialize too large and cells are saturated

» Can do random uniform / normal initialization with appropriate scale

6 6
B \/fan—in + fan-out’ +\/fan—in + fan—out]

> Want variance of inputs and gradients for each layer to be the same

> Glorot initializer: U

> Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale
each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

Dropout

> Probabilistically zero out parts of the network during training to prevent
overfitting, use whole network at test time

> Form of stochastic
regularization

> Similar to benefits of
ensembling: network
needs to be robust to
missing signals, so it
has redundancy

(a) Standard Neural Net

(b) After applying dropout.

» One line in Pytorch/Tensorflow Srivastava et al. (2014)

Adam

9t < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)

my < B1-my—1 + (1 — B1) - g¢ (Update biased first moment estimate)

vy B2 vi_1 + (1 — B2) - g2 (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)

vy < v /(1 — B%) (Compute bias-corrected second raw moment estimate)

0; « 0,1 — a - my/(\/V: + €) (Update parameters)
> m: exponentially-weighted moving average of gradients
> v: exponentially-weighted moving average of gradients squared

> B1=0.9, B2 =0.999, so these average over many steps

> Update is based on normalized corrected mean, incorporates momentum
Kingma and Ba (2015)

6.0 6.0
5.8 >
256 % 58 \\\\Adam (Default): 5.47+0.02
354 e ‘
a5 Is6 Adam: 5.35:0.01
5.2 b o=
25.0 Es54 RMSProp: 5.28::0.00
e 2
c e
Fase g 5.2 HB: 5.13+0.01
4.4 50 AdaGrad: 5.24+0.02 SGD: 5.69.10.04

20 40 60 80 100 : 20 40 60 80 100
Epoch Epoch

(e) Generative Parsing (Training Set) (f) Generative Parsing (Development Set)
> Wilson et al. NeurIPS 2017: adaptive methods can sometimes perform
badly at test time (Adam is in pink, SGD in black)
> One more trick: gradient clipping (set max value for your gradients)

Next Time: Word Representations

Word Representations

> Neural networks work very well at continuous data, but words are discrete
> Continuous model <-> expects continuous semantics from input

> “You shall know a word by the company it keeps” Firth (1957)

that the downturn was over

president |the __ of \ -

president | the __ said<+—"
governor

governor |the __ of

governor |the __ appointed

said sources_ ¢ said
said president ___ that reported

reported | sources__ ¢

[Finch and Chater 92, Shuetze 93, many others] slide credit: Dan Klein

Word Embeddings

> Want a vector space where similar words have similar embeddings

the movie was great
great

® good
the movie was good enjoyable

> Goal: come up with a way to dog

produce these embeddings

> For each word, want \
“medium” dimensional vector bad

(50-300 dims) representing it s

Takeaways

> Feedforward neural networks can be implemented easily in PyTorch

> We saw that these are basically logistic regression

> Easy to implement backpropagation (you don’t have to do anything!)
and use the standard tricks to get good performance

> Next class: thinking about the feature representations: word
representations / word vectors (word2vec and GloVe)

