CS388: Natural Language Processing
Lecture 6: Language Modeling, Self Attention

Greg Durrett

TENASX
The University of Texas at Austin
Administrivia

- Project 1 due today
- Project 2 released tonight
Recap: Skip-Gram

- Predict one word of context from word

\[
\text{the dog bit the man}
\]

\[
P(w'|w) = \text{softmax}(W e(w))
\]

- Parameters: \(d \times |V|\) vectors, \(|V| \times d\) output parameters (\(W\)) (also usable as vectors!)

- Predicting the next word from a word will be similar to language modeling (focus of this lecture!)

Mikolov et al. (2013)
Recap: GloVe

- Objective: \[
\sum_{i,j} f(\text{count}(w_i, c_j)) \left(w^T_i c_j + a_i + b_j - \log \text{count}(w_i, c_j) \right)^2
\]

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>dog</th>
<th>cat</th>
<th>ran</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>dog</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>cat</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>ran</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Linear regression with 16 points: each element is plugged into the above equation

\[+ \text{constant} = \log \text{count of pair} \]

(made up values — matrix will generally be symmetric, though)

Pennington et al. (2014)
Recap: Using Embeddings

- Approach 1: learn embeddings as parameters from your data
- Approach 2: initialize using GloVe, keep fixed
- Approach 3: initialize using GloVe, fine-tune

- Nearly all modern transfer learning uses Approach 3 (e.g., fine-tuning BERT). And you don’t just fine-tune embeddings, but instead use an entire language model
Today

- Language modeling intro
- Neural language modeling
- Self-attention
- Multi-head self-attention
- Positional encodings (if time)
Language Modeling
Language Modeling

- Fundamental task in both linguistics and NLP: can we determine if a sentence is *acceptable* or not?

- Related problem: can we evaluate if a sentence is grammatical? Plausible? Likely to be uttered?

- Language models: place a distribution $P(w)$ over strings w in a language. This is related to all of these tasks but doesn’t exactly map onto them.

- Today: autoregressive models $P(w) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) \ldots$

- Turns out this is also useful as the backbone pre-training task! (But it originated with modeling of grammatical/plausible sentences)
N-gram Language Models

\[P(w) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) \ldots \]

- n-gram models: distribution of next word is a categorical conditioned on previous n-1 words
 \[P(w_i|w_1, \ldots, w_{i-1}) = P(w_i|w_{i-n+1}, \ldots, w_{i-1}) \]

- Markov property: don’t remember all the context but only consider a few previous words

I visited San _____ put a distribution over the next word
2-gram: \(P(w \mid \text{San}) \)
3-gram: \(P(w \mid \text{visited San}) \)
4-gram: \(P(w \mid \text{I visited San}) \)
N-gram Language Models

\[P(w) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) \ldots \]

- n-gram models: distribution of next word is a categorical conditioned on previous n-1 words
 \[P(w_i|w_1, \ldots, w_{i-1}) = P(w_i|w_{i-n+1}, \ldots, w_{i-1}) \]

\[P(w|\text{visited San}) = \frac{\text{count(visited San, w)}}{\text{count(visited San)}} \]

3-gram probability, maximum likelihood estimate from a corpus (remember: count and normalize for MLE)

- Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B n-grams (all 5-grams occurring >40 times on the Web)
What happens when we scale to longer contexts?

\[P(w|\text{to}) \]
\[P(w|\text{go to}) \]
\[P(w|\text{to go to}) \]
\[P(w|\text{want to go to}) \]

\[\text{to occurs 1M times in corpus} \]
\[\text{go to occurs 50,000 times in corpus} \]
\[\text{to go to occurs 1500 times in corpus} \]
\[\text{want to go to: only 100 occurrences} \]

Probability counts get very sparse, and we often want information from 5+ words away.

What can we do?
Smoothing N-gram Language Models

I visited San _____ put a distribution over the next word

- Smoothing is very important, particularly when using 4+ gram models

\[
P(w | \text{visited San}) = (1 - \lambda) \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, w)}{\text{count}(\text{San})}
\]

- One technique is “absolute discounting:” subtract off constant \(k \) from numerator, set lambda to make this normalize (\(k=1 \) is like leave-one-out)

\[
P(w | \text{visited San}) = \frac{\text{count}(\text{visited San}, w) - k}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, w)}{\text{count}(\text{San})}
\]

- Smoothing schemes get very complex!
The Power of Language Modeling

My name _____

My name is _____

I visited San _____

The capital of Texas is _____

The casting and direction were top notch. Overall I thought the movie was ___

One good option \((is)\)?

Flat distribution over many alternatives. But hard to get a good distribution?

Requires some knowledge but not one right answer

Requires more knowledge (one answer...or is there?)

Requires basically doing sentiment analysis!
Neural Language Modeling
Neural Language Models

- Early work: feedforward neural networks looking at context

\[P(w_i | w_{i-n}, \ldots, w_{i-1}) \]

- Slow to train over lots of data! But otherwise this seems okay?

Bengio et al. (2003)
Problems with FFNNs

\[x = \text{I visited New York. I had a really fun time going up the ___} \]

- What are some words that can show up here? How do we know?

- What do we learn from this example?
Challenges of Neural Language Modeling

I visited New _____

‣ Advantages and disadvantages of these?

FFNN

DAN
Contextualized Embeddings

- Both RNNs and Transformers (and other models) can produce contextualized embeddings

 $e = (e_1, e_2, ..., e_n)$ \quad $e_i = f(x_1, x_2, ..., x_i)$

 $x = (x_1, x_2, ..., x_n)$

 $x = I visited New York. I had a really fun time going up the ___$

- Can also have bidirectional embedding representations, but learning these needs masked language models (later in the course)

- One solution: $e(x) = f(x_{-1}, the)$
RNNs: Why not?

- Slow. They do not parallelize and there are \(O(n) \) non-parallel operations to encode \(n \) items.
- Even modifications like LSTMs still don’t enable learning over very long sequences. Transformers can scale to thousands of words!
(Self-)Attention
Running Example

- Fixed-length sequence of 0s and 1s

\[
\begin{align*}
0000000 &\quad \text{All zeroes }= \text{last digit is } 0; \text{any } 1 = \text{last digit is } 1 \\
0100001 \\
0100101 &\quad \textbf{Attention}: \text{method to access arbitrarily* far back in context from this point} \\
0000101 \\
10001 \\
\end{align*}
\]

- RNNs generally struggle with this; remembering context for many positions is hard (though of course they can do this simplified example — you can even hand-write weights to do it!)
Keys and Query

> Keys: embedded versions of the sentence; query: what we want to find

Assume $0 = [1, 0]; 1 = [0, 1]$ (one-hot encodings of the tokens); call these e_i

Step 1: Compute scores for each key

Keys k_i

\[
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{array}
\]

Query: $q = [0, 1]$ (we want to find 1s)

$$s_i = k_i^T q$$

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 \\
\end{array}
\]
Attention

Step 1: Compute scores for each key

keys k_i

query: $q = [0, 1]$ (we want to find 1s)

Step 2: softmax the scores to get probabilities α

$0 \ 0 \ 1 \ 0 \Rightarrow (1/6, 1/6, 1/2, 1/6)$ if we assume $e=3$

Step 3: compute output values by multiplying embs. by alpha + summing

result = $\sum(\alpha_i e_i) = 1/6 \ [1, 0] + 1/6 \ [1, 0] + 1/2 \ [0, 1] + 1/6 \ [1, 0] = [1/2, 1/2]$
Attention

keys k_i

\[[1, 0] [1, 0] [0, 1] [1, 0] \]

query: $q = [0, 1]$ (we want to find 1s)

\[0 \quad 0 \quad 1 \quad 0 \]

\[(1/6, 1/6, 1/2, 1/6) \] if we assume $e=3$

result = \(\sum (\alpha_i e_i) = 1/6 [1, 0] + 1/6 [1, 0] + 1/2 [0, 1] + 1/6 [1, 0] = [1/2, 1/2] \)

How does this differ from just averaging the vectors (DAN)?

What if we have a very very long sequence?
New Keys

keys k_i

\[
\begin{bmatrix}
1, 0 \\
[1, 0] \\
[0, 1] \\
[1, 0]
\end{bmatrix}
\]

query: $q = [0, 1]$ (we want to find 1s)

We can make attention more peaked by not setting keys equal to embeddings.

$k_i = W^K e_i$

\[
W^K = \begin{bmatrix}
10 & 0 \\
0 & 10
\end{bmatrix}
\]

What will new attention values be with these keys?
Attention, Formally

- Original “dot product” attention: \(s_i = k_i^T q \)

- Scaled dot product attention: \(s_i = k_i^T W q \)

- Equivalent to having two weight matrices: \(s_i = (W^K k_i)^T(W^Q q) \)

- Other forms exist: Luong et al. (2015), Bahdanau et al. (2014) present some variants (originally for machine translation)
Self-Attention

- Self-attention: every word is both a key and a query simultaneously

Q: seq len x d matrix (d = embedding dimension = 2 for these slides)

K: seq len x d matrix

\[W^Q = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \]

no matter what the value is, we’re going to look for 1s

\[W^K = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix} \]

“booster” as before

Note: there are many ways to set up these weights that will be equivalent to this
Self-Attention

\[
E = \begin{pmatrix}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\]

\[W_Q = \begin{pmatrix}
0 & 1 \\
0 & 1 \\
\end{pmatrix}\]

\[W_K = \begin{pmatrix}
10 & 0 \\
0 & 10 \\
\end{pmatrix}\]

\[Q = E (W_Q) = \begin{pmatrix}
0 & 1 \\
0 & 1 \\
0 & 1 \\
\end{pmatrix}\]

\[K = E (W_K) = \begin{pmatrix}
10 & 0 \\
10 & 0 \\
0 & 10 \\
10 & 0 \\
\end{pmatrix}\]

Scores \(S = QK^T \quad S_{ij} = q_i \cdot k_j\)

\(\text{len} \times \text{len} = (\text{len} \times \text{d}) \times (\text{d} \times \text{len})\)

Let’s compute these now!
Self-Attention

\[
E = \begin{pmatrix}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\]

\[
W^Q = \begin{pmatrix}
0 & 1 \\
0 & 1 \\
\end{pmatrix}
\]

\[
W^K = \begin{pmatrix}
10 & 0 \\
0 & 10 \\
\end{pmatrix}
\]

\[
Q = E(W^Q) = \begin{pmatrix}
0 & 1 \\
0 & 1 \\
0 & 1 \\
\end{pmatrix}
\]

\[
K = E(W^K) = \begin{pmatrix}
10 & 0 \\
10 & 0 \\
0 & 10 \\
10 & 0 \\
\end{pmatrix}
\]

Scores \(S = QK^T \quad S_{ij} = q_i \cdot k_j \)

\(\text{len x len} = (\text{len x d}) \times (d \times \text{len}) \)

Final step: softmax to get attentions \(A \), then output is \(AE \)

*technically it’s \(A(EW^V) \), using a values matrix \(V = EW^V \)
Self-Attention (Vaswani et al.)

\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}} \right)V
\]

\[
Q = EW^Q, \quad K = EW^K, \quad V = EW^V
\]

- Normalizing by \(\sqrt{d_k} \) helps control the scale of the softmax, makes it less peaked

- This is just one head of self-attention — produce multiple heads via randomly initialize parameter matrices (more in a bit)

Vaswani et al. (2017)
Self-Attention

Alammar, *The Illustrated Transformer*
Self-Attention

Alammar, *The Illustrated Transformer*

sent len x sent len (attn for each word to each other)

\[
\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)
\]

sent len x hidden dim

Z is a weighted combination of V rows
Properties of Self-Attention

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Complexity per Layer</th>
<th>Sequential Operations</th>
<th>Maximum Path Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Attention</td>
<td>$O(n^2 \cdot d)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Recurrent</td>
<td>$O(n \cdot d^2)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Convolutional</td>
<td>$O(k \cdot n \cdot d^2)$</td>
<td>$O(1)$</td>
<td>$O(log_k(n))$</td>
</tr>
<tr>
<td>Self-Attention (restricted)</td>
<td>$O(r \cdot n \cdot d)$</td>
<td>$O(1)$</td>
<td>$O(n/r)$</td>
</tr>
</tbody>
</table>

- n = sentence length, d = hidden dim, k = kernel size, r = restricted neighborhood size
- **Quadratic complexity**, but $O(1)$ sequential operations (not linear like in RNNs) and $O(1)$ “path” for words to inform each other

Vaswani et al. (2017)
Multi-Head Self-Attention
Multi-head Self-Attention

Just duplicate the whole computation with different weights:

Alammar, *The Illustrated Transformer*
Multi-head Self-Attention

1) This is our input sentence*
2) We embed each word*
3) Split into 8 heads.

We multiply X or R with weight matrices

* In all encoders other than #0, we don't need embedding.
We start directly with the output of the encoder right below this one
Multi-head Self-Attention

1) This is our input sentence*
2) We embed each word*
3) Split into 8 heads. We multiply X or R with weight matrices
4) Calculate attention using the resulting Q/K/V matrices
5) Concatenate the resulting Z matrices, then multiply with weight matrix W^0 to produce the output of the layer

* In all encoders other than #0, we don’t need embedding. We start directly with the output of the encoder right below this one.

Thinking Machines

$X \rightarrow W_0^Q \rightarrow Q_0 \rightarrow Z_0 \rightarrow W^0 \rightarrow Z \rightarrow W_1^Q \rightarrow Q_1 \rightarrow Z_1 \rightarrow W^0 \rightarrow Z \rightarrow \cdots \rightarrow W_7^Q \rightarrow Q_7 \rightarrow Z_7 \rightarrow W^0 \rightarrow Z$
Challenges of Neural Language Modeling

I visited New ____

FFNN

Self-attention:

I visited New ____

FFNN

DAN

Still missing one component: position sensitivity

Self-attention:

Still missing one component: position sensitivity

Predator c_1

is c_2

a c_3

masterpiece c_4

$$av = \sum_{i=1}^{4} \frac{c_i}{4}$$

$$h_1 = f(W_1 \cdot av + b_1)$$

$$h_2 = f(W_2 \cdot h_1 + b_2)$$

softmax
Positional Encodings
Transformers: Position Sensitivity

- Encode each sequence position as an integer, add it to the word embedding vector

- Why does this work?

```
the movie was great
```

```
+ + + +
```

```
emb(1) emb(2) emb(3) emb(4)
```
Transformers

Alammar, *The Illustrated Transformer*

- Alternative from Vaswani et al.: sines/cosines of different frequencies (closer words get higher dot products by default)
Takeaways

‣ Language modeling is a fundamental task

‣ n-gram models are a basic, scalable solution but have limited context

‣ Self-attention is a solution to the question of: how do we look at a lot of context, efficiently, without blowing up parameter counts, and without forgetting far-back things?

‣ Next time: see the whole Transformer architecture and extensions of it