CS388: Natural Language Processing Lecture 6: Language Modeling, Self Attention

Greg Durrett

Administrivia

Project 1 due today

Project 2 released tonight

Recap: Skip-Gram

Predict one word of context from word

- Parameters: d x |V| vectors, |V| x d output parameters (W) (also usable as vectors!)
- Predicting the next word from a word will be similar to language modeling (focus of this lecture!)
 Mikolov et al. (2013)

Recap: GloVe

• Objective =
$$\sum_{i,j} f(\operatorname{count}(w_i, c_j)) \left(w_i^{\top} c_j + a_i + b_j - \log \operatorname{count}(w_i, c_j) \right)^2$$

the dog cat ran

Linear regression with 16 points: each element is plugged into the above equation

(made up values — matrix will generally be symmetric, though)

Recap: Using Embeddings

- Approach 1: learn embeddings as parameters from your data
- Approach 2: initialize using GloVe, keep fixed
- Approach 3: initialize using GloVe, fine-tune

Nearly all modern transfer learning uses Approach 3 (e.g., fine-tuning BERT). And you don't just fine-tune embeddings, but instead use an entire language model

Today

- Language modeling intro
- Neural language modeling
- Self-attention
- Multi-head self-attention
- Positional encodings (if time)

Language Modeling

Language Modeling

- Fundamental task in both linguistics and NLP: can we determine of a sentence is *acceptable* or not?
- Related problem: can we evaluate if a sentence is grammatical? Plausible? Likely to be uttered?
- Language models: place a distribution P(w) over strings w in a language. This is related to all of these tasks but doesn't exactly map onto them
- ▶ Today: autoregressive models $P(\mathbf{w}) = P(w_1)P(w_2|w_1)P(w_3|w_1,w_2)\dots$
- Turns out this is also useful as the backbone pre-training task! (But it originated with modeling of grammatical/plausible sentences)

N-gram Language Models

$$P(\mathbf{w}) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)\dots$$

- n-gram models: distribution of next word is a categorical conditioned on previous n-1 words $P(w_i|w_1,\ldots,w_{i-1})=P(w_i|w_{i-n+1},\ldots,w_{i-1})$
- Markov property: don't remember all the context but only consider a few previous words

I visited San ____ put a distribution over the next word

2-gram: P(w | San)

3-gram: P(w | visited San)

4-gram: P(w | I visited San)

N-gram Language Models

$$P(\mathbf{w}) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)\dots$$

• n-gram models: distribution of next word is a categorical conditioned on previous n-1 words $P(w_i|w_1,\ldots,w_{i-1})=P(w_i|w_{i-n+1},\ldots,w_{i-1})$

$$P(w|\text{visited San}) = \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})}$$

3-gram probability, maximum likelihood estimate from a corpus (remember: count and normalize for MLE)

 Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B n-grams (all 5-grams occurring >40 times on the Web)

Smoothing N-gram Language Models

What happens when we scale to longer contexts?

$$P(w| ext{to})$$
 to occurs 1M times in corpus $P(w| ext{go to})$ go to occurs 50,000 times in corpus $P(w| ext{to go to})$ to go to occurs 1500 times in corpus $P(w| ext{want to go to})$ want to go to: only 100 occurrences

- Probability counts get very sparse, and we often want information from 5+ words away
- What can we do?

Smoothing N-gram Language Models

I visited San ____ put a distribution over the next word

Smoothing is very important, particularly when using 4+ gram models

$$P(w|\text{visited San}) = (1 - \lambda) \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, w)}{\text{count}(\text{San})}$$
 this too!

• One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize (k=1 is like leave-one-out)

$$P(w|\text{visited San}) = \frac{\text{count}(\text{visited San}, w) - k}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, w)}{\text{count}(\text{San})}$$

Smoothing schemes get very complex!

The Power of Language Modeling

My name	
---------	--

One good option (is)?

My name is _____

Flat distribution over many alternatives. But hard to get a good distribution?

I visited San _____

Requires some knowledge but not one right answer

The capital of Texas is _____

Requires more knowledge (one answer...or is there?)

The casting and direction were top notch. Overall I thought the movie was ____

Requires basically doing sentiment analysis!

Neural Language Modeling

Neural Language Models

Early work: feedforward neural networks looking at context

Slow to train over lots of data! But otherwise this seems okay?

Problems with FFNNs

x = I visited New York. I had a really fun time going up the ____

What are some words that can show up here? How do we know?

What do we learn from this example?

Challenges of Neural Language Modeling

FFNN

DAN

Advantages and disadvantages of these?

Contextualized Embeddings

 Both RNNs and Transformers (and other models) can produce contextualized embeddings

$$e = (e_1, e_2, ..., e_n)$$
 $e_i = f(x_1, x_2, ..., x_i)$
 $x = (x_1, x_2, ..., x_n)$

unidirectional
 representation (only looks at past words)

x = I visited New York. I had a really fun time going up the ____

- Can also have bidirectional embedding representations, but learning these needs masked language models (later in the course)
- One solution: $e(x) = f(x_{-1}, the)$

RNNs: Why not?

- Slow. They do not parallelize and there are O(n) non-parallel operations to encode n items
- Even modifications like LSTMs still don't enable learning over very long sequences. Transformers can scale to thousands of words!

Running Example

Fixed-length sequence of 0s and 1s

000000

All zeroes = last digit is 0; any 1 = last digit is 1

0100001

0100101

0000101

Attention: method to access arbitrarily* far back in context from this point

- RNNs generally struggle with this; remembering context for many positions is hard (though of course they can do this simplified example
 - you can even hand-write weights to do it!)

Keys and Query

Keys: embedded versions of the sentence; query: what we want to find

Assume 0 = [1, 0]; 1 = [0, 1] (one-hot encodings of the tokens); call these e_i

Step 1: Compute scores for each key

```
keys k_i
[1, 0] [1, 0] [0, 1] [1, 0] query: q = [0, 1] (we want to find 1s)
0 \quad 0 \quad 1 \quad 0
s_i = k_i^T q
```

Attention

Step 1: Compute scores for each key

```
keys k_i
[1, 0] [1, 0] [0, 1] [1, 0] query: q = [0, 1] (we want to find 1s)

0 0 1 0

s_i = k_i^T q

0 0 1 0
```

Step 2: softmax the scores to get probabilities α

```
0 0 1 0 => (1/6, 1/6, 1/2, 1/6) if we assume e=3
```

Step 3: compute output values by multiplying embs. by alpha + summing

result = sum(
$$\alpha_i e_i$$
) = 1/6 [1, 0] + 1/6 [1, 0] + 1/2 [0, 1] + 1/6 [1, 0] = [1/2, 1/2]

Attention

```
keys ki
                                    query: q = [0, 1] (we want to find 1s)
[1, 0] [1, 0] [0, 1] [1, 0]
  (1/6, 1/6, 1/2, 1/6) if we assume e=3
 result = sum(\alpha_i e_i) = 1/6 [1, 0] + 1/6 [1, 0] + 1/2 [0, 1] + 1/6 [1, 0] = [1/2, 1/2]
How does this differ from just averaging the vectors (DAN)?
```

What if we have a very very long sequence?

New Keys

```
keys k_i
[1, 0] [1, 0] [0, 1] [1, 0] query: q = [0, 1] (we want to find 1s)

0 0 1 0
```

We can make attention more peaked by not setting keys equal to embeddings.

$$k_i = W^K e_i$$
 $W^K = \begin{cases} 10 & 0 \\ 0 & 10 \end{cases}$ $[10, 0][10, 0][0, 10][10, 0]$

What will new attention values be with these keys?

Attention, Formally

- Original "dot product" attention: $s_i = k_i^T q$
- Scaled dot product attention: $s_i = k_i^T W q$
- Equivalent to having two weight matrices: $s_i = (W^K k_i)^T (W^Q q)$
- Other forms exist: Luong et al. (2015), Bahdanau et al. (2014) present some variants (originally for machine translation)

Self-attention: every word is both a key and a query simultaneously

Q: seq len x d matrix (d = embedding dimension = 2 for these slides)

K: seq len x d matrix

$$W^{Q} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

no matter what the value is, we're going to look for 1s

$$W^{K} = \begin{cases} 10 & 0 \\ 0 & 10 \end{cases}$$

"booster" as before

Note: there are many ways to set up these weights that will be equivalent to this

$$E = \begin{pmatrix} 10 \\ 10 \\ 01 \\ 10 \end{pmatrix}$$

$$W^{Q} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$W^{K} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

$$E = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad W^{Q} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad W^{K} = \begin{pmatrix} 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \end{pmatrix}$$

$$Q = E(W^{Q}) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad K = E(W^{K}) = \begin{pmatrix} 10 & 0 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \end{pmatrix}$$
Scores S = QVI. Sy = Q_{K} by

$$K = E(W^{K}) = \begin{pmatrix} 100 \\ 100 \\ 010 \\ 100 \end{pmatrix}$$

Scores
$$S = QK^T$$
 $S_{ij} = q_i \cdot k_j$
len x len = (len x d) x (d x len)

Let's compute these now!

$$E = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$W^{Q} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

$$W^{K} = \begin{cases} 10 & 0 \\ 0 & 10 \end{cases}$$

$$E = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad W^{Q} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad K = E (W^{K}) = \begin{pmatrix} 10 & 0 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \end{pmatrix}$$
Scores S = QKT. Suppose the second s

$$K = E(W^{K}) = \begin{pmatrix} 100\\ 100\\ 010\\ 100 \end{pmatrix}$$

Scores
$$S = QK^T$$
 $S_{ij} = q_i \cdot k_j$
len x len = (len x d) x (d x len)

Final step: softmax to get attentions A, then output is AE *technically it's A (EW), using a values matrix V = EW

Self-Attention (Vaswani et al.)

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$Q = EW^Q$$
, $K = EW^K$, $V = EW^V$

- Normalizing by $\sqrt{d_k}$ helps control the scale of the softmax, makes it less peaked
- ► This is just one head of self-attention produce multiple heads via randomly initialize parameter matrices (more in a bit)

Alammar, The Illustrated Transformer sent len x sent len (attn for each word to each other)

sent len x hidden dim

Z is a weighted combination of V rows

Properties of Self-Attention

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(\hat{k}\cdot n\cdot \hat{d}^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

- ▶ n = sentence length, d = hidden dim, k = kernel size, r = restricted neighborhood size
- ▶ Quadratic complexity, but O(1) sequential operations (not linear like in RNNs) and O(1) "path" for words to inform each other

Multi-Head Self-Attention

Multi-head Self-Attention

Just duplicate the whole computation with different weights:

Alammar, The Illustrated Transformer

Multi-head Self-Attention

- 1) This is our input sentence* each word*
- 2) We embed
- 3) Split into 8 heads. We multiply X or R with weight matrices

Thinking Machines

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Multi-head Self-Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

Thinking Machines

 W_0^V

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

 W_0^Q

Mo

Challenges of Neural Language Modeling

FFNN

DAN

Self-attention:

Still missing one component: position sensitivity

Positional Encodings

Transformers: Position Sensitivity

- Encode each sequence position as an integer, add it to the word embedding vector
- Why does this work?

Transformers

Alammar, The Illustrated Transformer

 Alternative from Vaswani et al.: sines/cosines of different frequencies (closer words get higher dot products by default)

Embedding dim

Takeaways

- Language modeling is a fundamental task
- n-gram models are a basic, scalable solution but have limited context
- Self-attention is a solution to the question of: how do we look at a lot of context, efficiently, without blowing up parameter counts, and without forgetting far-back things?
- Next time: see the whole Transformer architecture and extensions of it