CS388: Natural Language Processing
Lecture 6: Language Modeling,
Self Attention

Greg Durrett

TEXAS

The University of Texas at Austin

Administrivia
> Project 1 due today

> Project 2 released tonight

Recap: Skip-Gram

> Predict one word of context from word

[]
gold = dog
Multiply
by W softmax

P(w'|w) = softmax(We(w))

bit
» Parameters: d x |V| vectors, |V]| x d output parameters (W) (also
usable as vectors!)
> Predicting the next word from a word will be similar to language
modeling (focus of this lecture!) Mikolov et al. (2013)

Recap: GloVe

> Objective = Z f(count(w;, ¢;)) (wich + a; + b; — log count(wj, cj)))2
,J
- . .
the dog cat ran

Bthe | 0 200 200 0

Linear regression with 16 points:
each element is plugged into the above

Baog [200 0 0 15| equation

I cat {200 0 0 15 -I + constant = log count of pair

Bron| 0 15 15 0

(made up values — matrix will generally be

symmetric, though) Pennington et al. (2014)

Recap: Using Embeddings

> Approach 1: learn embeddings as parameters from your data
> Approach 2: initialize using GloVe, keep fixed

> Approach 3: initialize using GloVe, fine-tune

> Nearly all modern transfer learning uses Approach 3 (e.g., fine-tuning
BERT). And you don't just fine-tune embeddings, but instead use an
entire language model

Today

> Language modeling intro

> Neural language modeling
> Self-attention

> Multi-head self-attention

> Positional encodings (if time)

Language Modeling

Language Modeling
> Fundamental task in both linguistics and NLP: can we determine of a
sentence is acceptable or not?

> Related problem: can we evaluate if a sentence is grammatical?
Plausible? Likely to be uttered?

> Language models: place a distribution P(w) over strings w in a language.
This is related to all of these tasks but doesn’t exactly map onto them

» Today: autoregressive models P(w) = P(wy)P(wo|wy)P(ws|wy, ws) . ..

» Turns out this is also useful as the backbone pre-training task! (But it
originated with modeling of grammatical/plausible sentences)

N-gram Language Models

P(w) = P(w;)P(wa|wy) P(ws|wy, ws) . ..
> n-gram models: distribution of next word is a categorical conditioned on
previous n-1words P(w;|wy,...,w;—1) = P(w;|w—pt1,...,wi—1)

> Markov property: don’t remember all the context but only
consider a few previous words

put a distribution over the next word
2-gram: P(w | San)

3-gram: P(w | visited San)

4-gram: P(w | | visited San)

| visited San

N-gram Language Models

P(w) = P(wy) P(wa|wy) P(ws|wy,ws) . ..
> n-gram models: distribution of next word is a categorical conditioned on
previous n-1words P(w;|wy,...,wi—1) = P(wi|wi—p+1, ..., wi—1)

count(visited San, w)

Plwlvisited —
(w[visited San) count (visited San)

3-gram probability, maximum likelihood
estimate from a corpus (remember:
count and normalize for MLE)

> Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B
n-grams (all 5-grams occurring >40 times on the Web)

Smoothing N-gram Language Models

> What happens when we scale to longer contexts?

P(wlto) to occurs 1M times in corpus

P(wlgo to) go to occurs 50,000 times in corpus
P(w|to go to) to go to occurs 1500 times in corpus
P(w|want to go to) want to go to: only 100 occurrences

> Probability counts get very sparse, and we often want information from
5+ words away

> What can we do?

Smoothing N-gram Language Models

| visited San put a distribution over the next word

> Smoothing is very important, particularly when using 4+ gram models
smooth

count(visited San, w) count(San, w)/ this
count(visited San) count(San) too!

P(w|visited San) = (1 — X)

> One technique is “absolute discounting:” subtract off constant k from
numerator, set lambda to make this normalize (k=1 is like leave-one-out)

count(visited San,w) — k count(San, w)

P(w|visited San) =

count (visited San) count(San)

> Smoothing schemes get very complex!

The Power of Language Modeling

My name > One good option (is)?

> Flat distribution over many alternatives. But hard

My name is
to get a good distribution?

| visited San
> Requires some knowledge but not one right answer

The capital of Texas is
> Requires more knowledge (one answer...or is there?)

The casting and direction were top notch. Overall | thought the movie was ___

> Requires basically doing sentiment analysis!

Neural Language Modeling

Neural Language Models

> Early work: feedforward neural networks looking at context

| | P(w;|wi—p, ..., wi—1)

| visited New

> Slow to train over lots of datal But otherwise this seems okay?

Bengio et al. (2003)

Problems with FFNNs

x =l visited New York. | had a really fun time going up the ___

> What are some words that can show up here? How do we know?

> What do we learn from this example?

Challenges of Neural Language Modeling

softmax

| | hy = f(Wa - hy +b)

FFNN hy = F(Wy-av+by)

4
I I 1| G
.

. (IO O I T T
| visited New Predator masterpicce

o [3 c

| - 4

FFNN DAN
> Advantages and disadvantages of these?

Contextualized Embeddings

> Both RNNs and Transformers (and other models) can produce
contextualized embeddings

> unidirectional
representation (only

X = (X1, X2,) Xn) looks at past words)

e=(ey ey .., en) e=flx,x, .., X)

x = | visited New York. | had a really fun time going up the ___

> Can also have bidirectional embedding representations, but learning
these needs masked language models (later in the course)

> One solution: e(x) = f(x.1, the)

RNNs: Why not?

outputy
previous h next h
_ —
(previous c) (next c)
input x

> Slow. They do not parallelize and there are O(n) non-parallel operations
to encode n items

> Even modifications like LSTMs still don’t enable learning over very long
sequences. Transformers can scale to thousands of words!

(Self-)Attention

Running Example

> Fixed-length sequence of Os and 1s

0000000 > All zeroes = last digit is 0; any 1 = last digit is 1
0100001

0100101 > Attention: method to access arbitrarily*
0000101 far back in context from this point

10001

> RNNs generally struggle with this; remembering context for many
positions is hard (though of course they can do this simplified example
— you can even hand-write weights to do it!)

Keys and Query
> Keys: embedded versions of the sentence; query: what we want to find
Assume 0=[1,0]; 1 =0, 1] (one-hot encodings of the tokens); call these ¢;

Step 1: Compute scores for each key
keys ki
[1,0][1,0] [0, 1][1, O]
0 0 1 0

query: g = [0, 1] (we want to find 1s)

Si= kiTq
0 0 1 0

Attention

Step 1: Compute scores for each key
keys ki
[1,0][1,0] [0, 1][1, O]
0 0 1 0

query: g = [0, 1] (we want to find 1s)

si = ki'q
0 0 1 0
Step 2: softmax the scores to get probabilities a
0 0 1 0=>(1/6,1/6,1/2, 1/6) if we assume e=3
Step 3: compute output values by multiplying embs. by alpha + summing
result = sum(aiei) =1/6 [1,0] +1/6[1,0]+1/2[0,1] +1/6[1,0] =[1/2,1/2]

Attention

keys ki
[1,0][1,0] [0, 1]1[1, 0]
0 0 1 0

query: g = [0, 1] (we want to find 1s)

(1/6,1/6,1/2, 1/6) if we assume e=3
result = sum(aiei) =1/6 [1,0] +1/6[1,0]+1/2[0,1] +1/6[1,0] =[1/2, 1/2]

How does this differ from just averaging the vectors (DAN)?

What if we have a very very long sequence?

New Keys

keys ki
[1,0][1,0] [0, 1][1, 0]
0 0 1 0

query: g = [0, 1] (we want to find 1s)

We can make attention more peaked by not setting keys equal to
embeddings.

10 0 [10, 0][10, 0][0, 10][10, O]
= ' K =
ki=Weer We= g0 0 0 1 0

What will new attention values be with these keys?

Attention, Formally

> Original “dot product” attention: s; = kiTg

> Scaled dot product attention: s;

kiTWq

> Equivalent to having two weight matrices: s; = (WX ki)T(WQ q)

> Other forms exist: Luong et al. (2015), Bahdanau et al. (2014) present
some variants (originally for machine translation)

Self-Attention
> Self-attention: every word is both a key and a query simultaneously
Q: seq len x d matrix (d = embedding dimension = 2 for these slides)

K: seq len x d matrix

1 . .
wa = g 1 no matter what the value is, we’re going to look for 1s
100
WK = “booster” as before

0 10

Note: there are many ways to set up these weights that will be equivalent
to this

Self-Attention
10 01 10 0
= K:
eo [10 8= 01 W= 010
01 01 100
10 01 100
= Q) = = Ky =
Q=EWa =14, K=E W) 010
01 100

Scores S=QKT Sij=gi- ki
len xlen = (len x d) x (d x len)

Let’s compute these now!

Self-Attention

10 01 10 0
Q= =
c_ [10 W= 01 W' 0 10
01 01 100
10 01 100
= Q) = = =
Q=ewa) = [07 K=ewq = [0
01 100

ScoresS=QKT Sj=qi-k;
len xlen =(lenxd) x (d xlen)

Final step: softmax to get attentions A, then output is AE

*technically it’s A (EWV), using a values matrix V = EWV

Self-Attention (Vaswani et al.)

T

Attention(Q, K, V') = softmax(C\B/d7
k

Q=EWQ, K=EWK V=EW

)1

> Normalizing by 4, helps control the scale of the softmax, makes it less
peaked

> This is just one head of self-attention — produce multiple heads via
randomly initialize parameter matrices (more in a bit)

Vaswani et al. (2017)

Self-Attention
_— Alammar, The lllustrated Transformer
npu
Embedding [T TT] CTTT]
Queries TT] [IT]
Keys 1] 1]
Values D:D CD]

Self-Attention

Alammar, The lllustrated Transformer

sent len x sent len (attn for
each word to each other)
T

softmax(E) %) qu

ven

:
.%

sent len x hidden dim
EEEH x = BEE Zis a weighted combination of V rows

Properties of Self-Attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) 0o(1) 0o(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) 0(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

> n = sentence length, d = hidden dim, k = kernel size, r = restricted
neighborhood size

» Quadratic complexity, but O(1) sequential operations (not linear like
in RNNs) and O(1) “path” for words to inform each other

Vaswani et al. (2017)

Multi-Head Self-Attention

Multi-head Self-Attention

Just duplicate the whole Alammar, The lllustrated Transformer
computation with different D:[
WelghtS: ATTENTION HEAD #0 ATTENTION HEAD #1
Q Q
W[‘(‘; VV1C

Multi-head Self-Attention

1) This is our 2) We embed 3) Split into 8 heads.
input sentence* each word* We multiply X or
with weight matrices

Wo@

SRR

W@
* In all encoders other than #0,
we don’t need embedding.
We start directly with the output
of the encoder right below this one

Multi-head Self-Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices)/K/V matrices produce the output of the layer
W,@
T °
W4Q
Q

*In all encoders other than #0,
we don't need embedding. -

We start directly with the output |
of the encoder right below this one

Challenges of Neural Language Modeling

softmax
| | hy = f(Wa-hy +by)
FFNN hy = f(Wy - av+by)
4
:—':l"
[—— /\"“Z‘
. I OO oM IrOorro
| visited New Predator . masterpioce
c Cc2 c3 Cq
FFNN DAN

Still missing one component:
position sensitivity

Self-attention: /—\
VP

| visited New

Positional Encodings

Transformers: Position Sensitivity

+ + + +

Positional
Encoding

Q
Input
Embedding

Inputs

[emb]
[emba)]
ECE)
[embia)]

> Encode each sequence position as an integer, add it to the word
embedding vector

> Why does this work?

(&) Transformers Takeaways

Alammar, The Illustrated Transformer

> Alternative from Vaswani et al.: sines/cosines of different frequencies > Language modeling is a fundamental task

closer words get higher dot products by default . . L
(g & P Y) > n-gram models are a basic, scalable solution but have limited context

: > Self-attention is a solution to the question of: how do we look at a lot of
: context, efficiently, without blowing up parameter counts, and without
: forgetting far-back things?

> Next time: see the whole Transformer architecture and extensions of it

 Embedding dim

Words

