CS388: Natural Language Processing Lecture 7: Transformers

Greg Durrett

Project 2 due on Feb 14

Final project spec posted soon

Administrivia

- Explorations: what did you try and what did you find?
- Part 1: LR schedules / step sizes
- Part 1: better features
- Part 2: batching
- Part 2: other architectures

Project 1 Postmortem

Step 1: Compute scores for each key keys ki [1, 0] [1, 0] [0, 1] [1, 0]0 1 \mathbf{O} 0 $S_i = k_i^T q$ 0 0 1 0

Step 2: softmax the scores to get probabilities α ()0

Recap: Attention

query: q = [0, 1] (we want to find 1s)

- 1 0 => (1/6, 1/6, 1/2, 1/6) if we assume e=3
- Step 3: compute output values by multiplying embs. by alpha + summing
 - result = sum($\alpha_i e_i$) = 1/6 [1, 0] + 1/6 [1, 0] + 1/2 [0, 1] + 1/6 [1, 0] = [1/2, 1/2]

Scores S = QK^T $S_{ij} = q_i \cdot k_j$ len x len = (len x d) x (d x len)Final step: softmax to get attentions A, then output is AE *technically it's A (EW^V), using a values matrix V = EW^V

Recap: Multi-head Self-Attention

Just duplicate the whole computation with different weights:

Recap: Positional Encodings

Encode each sequence position as an integer, add it to the word embedding vector

Recap: Positional Encodings

(closer words get higher dot products by default)

Alammar, The Illustrated Transformer

Alternative from Vaswani et al.: sines/cosines of different frequencies

Embedding dim

Transformers

Alternate multi-head self-attention with feedforward layers that operate over each word individually

 $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not needed in A4)

Architecture

- Vectors: d_{model}
- Queries/keys: d_k , always smaller than d_{model}
- Values: separate dimension d_v , output is multiplied by W^o which is $d_v x d_{model}$ so we can get back to *d_{model}* before the residual
- FFN can explode the dimension with W_1 and collapse it back with W_2

 $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$

Dimensions

Transformer Architecture

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v
base	6	512	2048	8	64	64

From Vaswani et al.

Model Name	$n_{ m params}$	n_{layers}	d_{model}	$n_{ m heads}$	$d_{ m head}$
GPT-3 Small	125M	12	768	12	64
GPT-3 Medium	350M	24	1024	16	64
GPT-3 Large	760M	24	1536	16	96
GPT-3 XL	1.3B	24	2048	24	128
GPT-3 2.7B	2.7B	32	2560	32	80
GPT-3 6.7B	6.7B	32	4096	32	128
GPT-3 13B	13.0B	40	5140	40	128
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128

From GPT-3; d_{head} is our d_k

Transformer Architecture

1	description	FLOPs / update	% FLOPS MHA	% FLOPS FFN	% FLOPS attn	% FLOPS logit
8	OPT setups					
9	760M	4.3E+15	35%	44%	14.8%	5.8%
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%
13	13B	4.1E+17	22%	69%	6.9%	1.6%
14	30B	9.0E+17	20%	74%	5.3%	1.0%
15	66B	9.5E+17	18%	77%	4.3%	0.6%
16	175B	2.4E+18	17%	80%	3.3%	0.3%

Credit: Stephen Roller on Twitter

Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to.
 E.g., the first "v" attends very heavily to itself (bright yellow box)
- On the HW: look to see if the attentions make sense!

Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- Right now we don't need to think about both of these parts — will return in the context of

- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)
 - Vaswani et al. (2017)

Using Transformers

What do Transformers produce?

- Encoding of each word can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

the movie was great

Transformer Uses

Transducer: make some prediction for each element in a sequence

- output **y** = score for each tag, then softmax

- Classifier: encode a sequence into a fixed-sized vector and classify that predict sentiment (matmul + softmax)
 - translate
 - paraphrase/compress

Transformer Uses

Alternative: use a placeholder [CLS] token at the start of the sequence. Because [CLS] attends to everything with self-attention, it can do the pooling for you!

- predict sentiment (matmul + softmax)
- translate
- paraphrase/compress

encoding of [CLS token] \rightarrow matmul + softmax \rightarrow predict sentiment

Transformer Uses

about their relationship

Contradiction

[CLS] The woman is driving a car [SEP] The woman is walking.

compared to something like a DAN?

Sentence pair classifier: feed in two sentences and classify something

Why might Transformers be particularly good at sentence pair tasks

Transformer Language Modeling

Transformer Language Modeling

I saw the dog

 W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

$$P(w|\text{context}) = \frac{\exp(\mathbf{w} \cdot \mathbf{h_i})}{\sum_{w'} \exp(\mathbf{w'} \cdot \mathbf{h_i})}$$

equivalent to

$P(w | \text{context}) = \text{softmax}(W \mathbf{h}_i)$

Training Transformer LMs

- (similar to batching but this is NOT what we refer to as batching)

Input is a sequence of words, output is those words shifted by one,

Allows us to train on predictions across several timesteps simultaneously

Training Transformer LMs

loss fcn = nn.NLLLoss() loss += loss_fcn(log_probs, ex.output_tensor)

classes] to [batch * seq len, num classes]. You do not need to batch

P(w|context)

 $\sim \log P(w^*|context)$

Total loss = sum of negative log likelihoods at each position

[seq len, num output classes] [seq len]

Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num]

Batched LM Training

Multiple sequences and multiple timesteps per sequence

A Small Problem with Transformer LMs

accuracy. Why?

This Transformer LM as we've described it will easily achieve perfect

With standard self-attention: "I" attends to "saw" and the model is

Attention Masking

Key words saw the dog

We want to mask out everything in red (an upper triangular matrix)

In n.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

Inside the module; need to fill in size parameters layers = nn.TransformerEncoderLayer([...]) $\left[\cdot \cdot \cdot \right]$ # Inside forward(): puts negative infinities in the red part mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1) output = transformer encoder(input, mask=mask)

You cannot use these for Part 1, only for Part 2

Implementing in PyTorch

```
transformer encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
```


- Accuracy doesn't make sense predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)
 - $\frac{1}{n} \sum_{i=1}^{n}$
- Perplexity: exp(average negative log likelihood). Lower is better
 - Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators

$$\int \log P(w_i|w_1,\ldots,w_{i-1})$$

- new task
- Train on language modeling...

Preview: Pre-training and BERT

Transformers are usually large and you don't want to train them for each

then "fine-tune" that model on your target task with a new classification layer

Transformer Extensions

Scaling Laws

Figure 1 bottlenecked by the other two.

Transformers scale really well!

Transformer Runtime

- Even though most parameters and FLOPs are in feedforward layers, Transformers are still limited by quadratic complexity of selfattention
- Many ways proposed to handle this

Linformer (Wang et al., 2020b)

Performers

Figure 1: Approximation of the regular attention mechanism AV (before D^{-1} -renormalization) via (random) feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

No more len² term, but we are fundamentally approximating the self-attention mechanism (cannot form A and take the softmax)

Choromanski et al. (2020)

(a) Full n^2 attention (b) Sliding window attention

- Use several pre-specified self-attention patterns that limit the number of operations while still allowing for attention over a reasonable set of things
- Scales to 4096-length sequences

Longformer

- (c) Dilated sliding window (d) Global+sliding window
- Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

Beltagy et al. (2021)

Longformer

Loop = non-vectorized version

Beltagy et al. (2021)

Longformer

- Loop = non-vectorized version
- Note that memory of full SA blows up but runtime doesn't. Why?

's up but runtime doesn't. Why? Beltagy et al. (2021)

- DALL-E 1: learns a discrete "codebook" and treats an image as a sequence of visual tokens which can be modeled autoregressively, then decoded back to an image
- Decision Transformer: does reinforcement learning by Transformerbased modeling over a series of actions
- Transformers are now being used all over AI

Vision and RL

Ramesh et al. (2021), Chen et al. (2021)

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences
- Next: machine translation and seq2seq models (conditional language modeling)