_ (& Administrivia
CS388: Natural Language Processing

> Project2d Feb 14
Lecture 7: Transformers roject 2 dreonre

> Final project spec posted soon

Greg Durrett

TEXAS

The University of Texas at Austin

: Project 1 Postmortem : Recap: Attention
> Explorations: what did you try and what did you find? Step 1: Compute scores for each key
keys ki
» Part 1: LR schedules / step sizes [1,0][1, 0] [0, 1][1, O] query: g = [0, 1] (we want to find 1s)

0 0 1 0
> Part 1: better features

si=ki'q
Part 2: batching 0 0 1 0

v

Step 2: softmax the scores to get probabilities a
0 0 1 0=>(1/6,1/6,1/2, 1/6) if we assume e=3
Step 3: compute output values by multiplying embs. by alpha + summing

result = sum(aiei) =1/6 [1,0] + 1/6[1,0]+1/2[0,1] +1/6[1,0] =[1/2, 1/2]

> Part 2: other architectures




(C Recap: Self-Attention

(@ Recap: Multi-head Self-Attention

10 01 10 0 Just duplicate the whole X Alammar, The lllustrated Transformer
E= 10 wa= 01 wie= 0 10 computation with different [ EEE
o 1 0 1 10 o WEightS: ATTENTION HEAD #0 ATTENTION HEAD #1
10 01 100
Q=E(Wq) = K=E(WK) = Qo Q
01 010 mis . is .
01 100 e w
ScoresS=QKT  Sij=gi-k E E
len xlen =(lenxd) x (d xlen)
Final step: softmax to get attentions A, then output is AE — e
*technically it’s A (EWV), using a values matrix V = EWV
: Recap: Positional Encodings : Recap: Positional Encodings
Alammar, The lllustrated Transformer
Positional e me V@ gt > Alternative from Vaswani et al.: sines/cosines of different frequencies
Encoding
+ + +

Input
Embedding

Inputs I

> Encode each sequence position as an integer, add it to the word
embedding vector

emb(2
emb(3

[embir]
[embi@] +

(closer words get higher dot products by default)

7 Embeddlng d|m

Words




Architecture

> Alternate multi-head self-attention with
feedforward layers that operate over each

4 )
Add & Norm

word individually Feed
Forward
FFN(.’L‘) = maX(O, Wy + bl)Wz + bo
Tra nSforme rs > These feedforward layers are where most
of the parameters are ﬁ@m

> Residual connections in the model: input of a MU|t"H,ead

layer is added to its output Attention
o 1

> Layer normalization: controls the scale of — 1| )
different layers in very deep networks (not
needed in A4)

Dimensions Transformer Architecture

> Vectors: dmode
> Queries/keys: dk, always smaller than dmodes

> Values: separate dimension d,,
output is multiplied by WO which
is dv X dmodel SO We can get back to

dmoder before the residual dy > dmodel

> FFN can explode the dimension with W1
and collapse it back with W,

FFN(J)) = max(O, Wy + bl)Wz + b

1 dmode/

-
Add & Norm

Feed

dintdnal
" Eorward

amode/

(->| Add & Norm l

Multi-Head
Attention

\.

N

dkA_dxt _dvp

N dwga dae h dp dy

L dmcde/

Ve

Add & Norm

J/

dmode/

Vaswani et al. (2017)

base | 6 512 2048 8 64 64
. Feed
> From Vaswani et al. Forward
\
Model Name Mparams  Mlayers @model  Theads  @head dmode/
GPT-3 Small 125M 12 768 12 64 ,-»' Add & Norm |
GPT-3 Medium 350M 24 1024 16 64
GPT-3 Large 760M 24 1536 16 9% Multi-Head
GPT-3 XL 1.3B 24 2048 24 128 ;
GPT-32.7B 2.7B 32 2560 32 80 Attention
GPT-3 6.7B 6.7B 32 4096 32 128 A )
GPT-3 13B 13.0B 40 5140 40 128 \ ‘
GPT-3175B or “GPT-3” 1750B 96 12288 96 128 \
dmodel

> From GPT-3; dheqd iS OUr di

J




Transformer Architecture

% % % %
1 FLOPs/ FLOPS FLOPS FLOPS FLOPS
description update  MHA FFN attn logit

8 OPT setups
9  760M 4.3E+15 35% 44% 148% 5.8%
10  1.3B 1.3E+16 32% 51% 12.7% 5.0%
1 27B 2.5E+16 29% 56% 11.2% 3.3%
12 6.7B 1.1E+17 24% 65% 8.1% 2.4%
13 13B 41E+17 22% 69% 6.9% 1.6%
14 30B 9.0E+17 20% 74% 53% 1.0%
15 66B 9.5E+17 18% 77% 43% 0.6%
16 175B 2.4E+18 17% 80% 33% 0.3%

Credit: Stephen Roller on Twitter

Attention Maps

average

> Example visualization of heir
attention matrix A (from
assignment)

- —n T

> Each row: distribution over
what that token attends to.
E.g., the first “v” attends very
heavily to itself (bright yellow
box)

> On the HW: look to see if the
attentions make sense!

mMQ W <D

oM T —o

albedo

Transformers: Complete Model

Probabilities

I

> Original Transformer paper presents an
encoder-decoder model

Linear

Add & Norm

> Right now we don’t need to think about both
of these parts — will return in the context of
e MT

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward
Add & Norm

(Add & Norm
Add & Norm ood

Multi-Head Multi-Head
Attention Attention

> Can turn the encoder into a decoder-only
Ly ) < ) .
L ) model through use of a triangular causal
Positional ition: . .
Encocing QS fwoans  attention mask (only allow attention to

Input Output .
Emb%amg Embeté’amg previous tokens)

Inputs Outputs
(shifted right)

ﬁ

Vaswani et al. (2017)

Using Transformers




What do Transformers produce?

t t t t
[ I I ]! |
the movie was great

> Encoding of each word — can pass this to another layer to make a
prediction (like predicting the next word for language modeling)

> Like RNNs, Transformers can be viewed as a transformation of a
sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

> Transducer: make some prediction for each element in a sequence

DT NN VBD )
4 4 4 t output y = score for each tag, then softmax

tt t 1

the movie was great
> Classifier: encode a sequence into a fixed-sized vector and classify that

predict sentiment (matmul + softmax)

average poolin
& p’_g_< translate

paraphrase/compress
t t t t

the movie was great

Transformer Uses

predict sentiment (matmul + softmax)

average poolin
& p’_g_< translate

paraphrase/compress
t i t f

the movie was great

> Alternative: use a placeholder [CLS] token at the start of the sequence. Because
[CLS] attends to everything with self-attention, it can do the pooling for you!

encoding of [CLS token] — matmul + softmax — predict sentiment

: |
f f i f i

[CLS] the movie was great

Transformer Uses

> Sentence pair classifier: feed in two sentences and classify something
about their relationship

Contradiction
T

[CLS] The woman is driving a car [SEP] The woman is walking .

> Why might Transformers be particularly good at sentence pair tasks
compared to something like a DAN?




Transformer Language Modeling

Transformer Language Modeling

word probs - hs
|  P(w|context) = exp(w - hy)

h I:::I Y €xp(w’ - hy)

equivalent to

|  saw the dog P(w|context) = softmax(Why)

» Wis a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)

Training Transformer LMs

I saw the dog running

t t+ t t 1 |

<s> | saw the dog

> Input is a sequence of words, output is those words shifted by one,

> Allows us to train on predictions across several timesteps simultaneously
(similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs

| l — P(w | context)

, ' x T , “loss = — log P(w* | context)
' F Il F Il I F | Total loss = sum of negative log
| | likelihoods at each position
i f f i

[ Il Il ]! |
| saw the dog

loss_fcn = nn.NLLLoss()

loss += loss_fcn(log_probs, ex.output_tensor)
[seq len, num output classes] [seq len]

> Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num

classes] to [batch * seq len, num classes]. You do not need to batch




Batched LM Training

batch dim / ( looked very excited to be N
4 in  the park and it A

(1 saw the dog running\ 1 t 1 t t

[ I ][ : ][ I Il : | : ] | i f i i i |
| | i i i i i
[ || I I[ I[ ]
| 1 I : I I I i ] |_<s> in the park and /
N | saw_the dog . Multiple sequences and multiple

timesteps per sequence

A Small Problem with Transformer LMs

> This Transformer LM as we’ve described it will easily achieve perfect
accuracy. Why?

I  saw the dog running
[ I I[ I[ | ]
i t

| t t t |
i i i t

[ I I Il I[ |

<s> | saw the dog

> With standard self-attention: “I” attends to “saw” and the model is
“cheating”. How do we ensure that this doesn’t happen?

Attention Masking

> What do we want to prohibit?

Key words
<s> | saw the dog
<s> I
| |
Query words  gqw I
the [
dog

> We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

> nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers,
can accept an input and a mask for language modeling:

# Inside the module; need to fill in size parameters

layers = nn.TransformerEncoderLayer([...])

transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .]

# Inside forward(): puts negative infinities in the red part

mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)

output = transformer_encoder(input, mask=mask)

> You cannot use these for Part 1, only for Part 2




LM Evaluation

> Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

> Evaluate LMs on the likelihood of held-out data (averaged to

normalize for length) n

Ezlogp(wi\wl, e Wim1)
i=1

> Perplexity: exp(average negative log likelihood). Lower is better
> Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

» Avg NLL (base e) = 1.242  Perplexity = 3.464 <== geometric mean of
denominators

Preview: Pre-training and BERT

> Transformers are usually large and you don’t want to train them for each
new task

Train on language modeling... then “fine-tune” that model on your
target task with a new classification layer
movie was great . DT NN VBD JJ
t t t t
tf 1T 1 1 1

the movie was great the movie was great

Transformer Extensions

Scaling Laws

7 4.2
6 —— L=(D/5.4-1013)70.0% | 5.6 —— L=(N/8.8-10%3)70076
3.9
4.8
w5
§ . 3.6 4.0
*ﬂ.;;) 3.3 32
F 3
3.0
24
L= (Cm‘n/2.3 . 108)70.050
2 2.7
10— 1077 107° 1073 10-! 10! 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

> Transformers scale really well!

Kaplan et al. (2020)




Transformer Runtime

Charformer

> Even though most Tay et al. (2020)

TokenLearner
parameters and FLOPs are A AN e
(Dai et al, 2019) ‘Odomgwtal, 2019

in feedforward layers,
Transformers are still

Recurrefice pemon ey
Downsampling ComPresse
Compressive

Transformer/  set Transformer
awet st 2019 asectat 2019)

. . . Clusterformer
| d b d Routing Wang et 1, 2020)
imited by quadratic Fumnel  Poolingformer™ Tfensformer
complexity of self- PR e g
BB R
. Low-Rank Transformer N
attention toouramer QRS I\ Sikbonn) Clustered Attention

tntormer  -OW RANK /" Long shon
(Wang et ol 20200) Kernels T::slom\yer
oy

Transformen

Fixed/Factorized/ "

> d:
Many ways proposed smmeny]  Random Pattems o
Random Feature Attention Transformer
. Pang ot e, 2021) (Tayeta, GShard o
to handle this - Blockwie Transtormer o= T

Linear

Sparse  clm
et

Sparse Transformer
(Cwders. 209)

Image Transformer Switch
Pamar . 2016) Transformer  ProductKey
(Foduz tat 2021) M

Axial Transformer

Scaling Transformer
« )

Performers

e O(L?d) N SO(Lrd) T
¥ : 7 /: L : :,()(le)

i BIONERRE =

i VAL %Lxdi%iLXj’r 835 rx L

i / (IS N

/
vV o nQ N
Figure_ 1 ;\;;;;r(_);il_n;t_ic;n_o_f_ﬂIe_r;éu_la_.r_attemion mechanism AV (before D
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

> No more len2 term, but we are fundamentally approximating the
self-attention mechanism (cannot form A and take the softmax)

Choromanski et al. (2020)

Longformer

r
Tt e EEEEREes REEEm
!

ki

il

i
T
mEEEE EEEEEEEE:
h
T

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

» Use several pre-specified self-attention patterns that limit the number of
operations while still allowing for attention over a reasonable set of things

> Scales to 4096-length sequences
Beltagy et al. (2021)

Longformer

Time Memory
2500 7 15000
| =#= Full self-attention
2000 4 / =& Longformer-loop 12500 4
/=% Longformer-chunks
5 1500 4 -#— Longformer-cuda 10000 1
© om
< 75004
3 1000 =
E 5000 A
500 +
2500 A
0 4
T T T 0 T T T
5000 10000 15000 5000 10000 15000
seq len seq len

> Loop = non-vectorized version

Beltagy et al. (2021)




Longformer

Time Memory
2500 15000
== Full self-attention
2000 4 Longformer-loop 12500 A
=%¥— Longformer-chunks
£ 1500 —#— Longformer-cuda 10000 A
© =)
< 7500 A
3 1000 =
£ 5000 -
500
2500 A
0 B
0

5000 10000 15000 5000 10000 15000
seq len seq len

> Loop = non-vectorized version
> Note that memory of full SA blows up but runtime doesn’t. Why?
Beltagy et al. (2021)

Vision and RL

> DALL-E 1: learns a discrete “codebook” and treats an image as a
sequence of visual tokens which can be modeled autoregressively,
then decoded back to an image

> Decision Transformer: does reinforcement learning by Transformer-
based modeling over a series of actions

> Transformers are now being used all over Al

Ramesh et al. (2021), Chen et al. (2021)

Takeaways

> Transformers are going to be the foundation for the much of the rest
of this class and are a ubiquitous architecture nowadays

> Many details to get right, many ways to tweak and extend them, but
core idea is the multi-head self attention and their ability to
contextualize items in sequences

> Next: machine translation and seq2seq models (conditional language
modeling)




