
CS388:	Natural	Language	Processing

Lecture	7:	Transformers

Greg	Durret

Administrivia

‣ Project	2	due	on	Feb	14

‣ Final	project	spec	posted	soon

Project	1	Postmortem

‣ Explorations:	what	did	you	try	and	what	did	you	find?

‣ Part	1:	LR	schedules	/	step	sizes

‣ Part	1:	better	features

‣ Part	2:	batching

‣ Part	2:	other	architectures

Recap:	Attention

0								0								1								0							
[1,	0] [1,	0] [0,	1] [1,	0] query:	q	=	[0,	1]		(we	want	to	find	1s)

keys	ki

Step	1:	Compute	scores	for	each	key

si	=	kiTq

0								0								1								0							

Step	2:	softmax	the	scores	to	get	probabilities	α

0								0								1								0	=>	(1/6,	1/6,	1/2,	1/6)	if	we	assume	e=3
Step	3:	compute	output	values	by	multiplying	embs.	by	alpha	+	summing

result	=	sum(αiei)	=	1/6	[1,	0]	+	1/6	[1,	0]	+	1/2	[0,	1]	+	1/6	[1,	0]	=	[1/2,	1/2]



Recap:	Self-Attention

Q	=	E	(WQ) (
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K	=	E	(WK) (
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Scores	S	=	QKT

len	x	len	=	(len	x	d)	x	(d	x	len)

(
<latexit sha1_base64="XW4JXhsPFUtKrlJg1g2hAcu3nks="></latexit>

)
<latexit sha1_base64="QzXJyoCGseUw0msm0ZMUO0u8K80="></latexit>

E	=	

1	0 
1	0 
0	1 
1	0

WK	=
10		0 
	0		10WQ	=

	0		1 
	0		1

Final	step:	softmax	to	get	attentions	A,	then	output	is	AE

*technically	it’s	A	(EWV),	using	a	values	matrix	V	=	EWV

Sij	=	qi	·	kj

Recap:	Multi-head	Self-Attention
Alammar,	The	Illustrated	TransformerJust	duplicate	the	whole	

computation	with	different	
weights:

Recap:	Positional	Encodings

‣ Encode	each	sequence	position	as	an	integer,	add	it	to	the	word	
embedding	vector

the		movie		was			great

em
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Recap:	Positional	Encodings
Alammar,	The	Illustrated	Transformer

W
or
ds

Embedding	dim

‣ Alternative	from	Vaswani	et	al.:	sines/cosines	of	different	frequencies	
(closer	words	get	higher	dot	products	by	default)



Transformers

Architecture
‣ Alternate	multi-head	self-attention	with	
feedforward	layers	that	operate	over	each	
word	individually

‣ Residual	connections	in	the	model:	input	of	a	
layer	is	added	to	its	output

‣ Layer	normalization:	controls	the	scale	of	
different	layers	in	very	deep	networks	(not	
needed	in	A4)

‣ These	feedforward	layers	are	where	most	
of	the	parameters	are

Dimensions

Vaswani	et	al.	(2017)

‣ Vectors:	dmodel

‣ Queries/keys:	dk	,	always	smaller	than	dmodel

‣ Values:	separate	dimension	dv	,	
output	is	multiplied	by	WO	which	
is	dv	x	dmodel	so	we	can	get	back	to	
dmodel	before	the	residual

dmodel

dk dk dv

dv	->	dmodel

dmodel

dinternal

dmodel

‣ FFN	can	explode	the	dimension	with	W1	
and	collapse	it	back	with	W2

Transformer	Architecture

dmodel

dmodel

dmodel

‣ From	GPT-3;	dhead	is	our	dk

‣ From	Vaswani	et	al.



Transformer	Architecture

Credit:	Stephen	Roller	on	Twitter

Attention	Maps
‣ Example	visualization	of	
attention	matrix	A	(from	
assignment)

‣ Each	row:	distribution	over	
what	that	token	attends	to.	
E.g.,	the	first	“v”	attends	very	
heavily	to	itself	(bright	yellow	
box)

‣On	the	HW:	look	to	see	if	the	
attentions	make	sense!

Transformers:	Complete	Model

Vaswani	et	al.	(2017)

‣ Original	Transformer	paper	presents	an	
encoder-decoder	model

‣ Right	now	we	don’t	need	to	think	about	both	
of	these	parts	—	will	return	in	the	context	of	
MT

‣ Can	turn	the	encoder	into	a	decoder-only	
model	through	use	of	a	triangular	causal	
attention	mask	(only	allow	attention	to	
previous	tokens)

Using	Transformers



What	do	Transformers	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
prediction	(like	predicting	the	next	word	for	language	modeling)

the		movie		was			great

‣ Like	RNNs,	Transformers	can	be	viewed	as	a	transformation	of	a	
sequence	of	vectors	into	a	sequence	of	context-dependent	vectors

Transformer	Uses
‣ Transducer:	make	some	prediction	for	each	element	in	a	sequence

‣ Classifier:	encode	a	sequence	into	a	fixed-sized	vector	and	classify	that

the		movie		was			great

predict	sentiment	(matmul	+	softmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	softmax

average	pooling

Transformer	Uses

the		movie		was			great

predict	sentiment	(matmul	+	softmax)

translate
paraphrase/compress

average	pooling

‣ Alternative:	use	a	placeholder	[CLS]	token	at	the	start	of	the	sequence.	Because	
[CLS]	attends	to	everything	with	self-attention,	it	can	do	the	pooling	for	you!

[CLS]	the		movie		was			great

encoding	of	[CLS	token]							matmul	+	softmax								predict	sentiment

Transformer	Uses

[CLS]	The	woman	is	driving	a	car	[SEP]	The	woman	is	walking	.

Contradiction

‣ Sentence	pair	classifier:	feed	in	two	sentences	and	classify	something	
about	their	relationship

‣ Why	might	Transformers	be	particularly	good	at	sentence	pair	tasks	
compared	to	something	like	a	DAN?



Transformer	Language	Modeling

Transformer	Language	Modeling

I							saw				the				dog

hi

P (w|context) = exp(w · hi)P
w0 exp(w0 · hi)

P (w|context) = softmax(Whi)

‣ W	is	a	(vocab	size)	x	(hidden	size)	matrix;	linear	layer	in	PyTorch	(rows	
are	word	embeddings)

equivalent	to

word	probs

Training	Transformer	LMs

<s>							I							saw				the				dog

‣ Input	is	a	sequence	of	words,	output	is	those	words	shifted	by	one,

I							saw				the				dog		running

‣ Allows	us	to	train	on	predictions	across	several	timesteps	simultaneously	
(similar	to	batching	but	this	is	NOT	what	we	refer	to	as	batching)

Training	Transformer	LMs

I							saw				the				dog

Total	loss	=	sum	of	negative	log	
likelihoods	at	each	position

P(w|context)

loss	=	—	log	P(w*|context)

loss_fcn	=	nn.NLLLoss()

loss	+=	loss_fcn(log_probs,	ex.output_tensor)

[seq	len,	num	output	classes] [seq	len]

‣ Batching	is	a	little	tricky	with	NLLLoss:	need	to	collase	[batch,	seq	len,	num	
classes]	to	[batch	*	seq	len,	num	classes].	You	do	not	need	to	batch



Batched	LM	Training
I	saw	the	dog	running	in	the	park	and	it	looked	very	excited	to	be	there

<s>							I							saw				the				dog

I							saw				the				dog		running

<s>						in						the				park			and

in						the				park			and					it
batch	dim

‣ Multiple	sequences	and	multiple	
timesteps	per	sequence

looked	very	excited	to	be

A	Small	Problem	with	Transformer	LMs

<s>							I							saw				the				dog

‣ With	standard	self-attention:	“I”	attends	to	“saw”	and	the	model	is	
“cheating”.	How	do	we	ensure	that	this	doesn’t	happen?

I							saw				the				dog		running

‣ This	Transformer	LM	as	we’ve	described	it	will	easily	achieve	perfect	
accuracy.	Why?

Attention	Masking

<s>							
I							
saw				
the				
dog

‣ What	do	we	want	to	prohibit?

‣ We	want	to	mask	out	everything	in	red	(an	upper	triangular	matrix)

<s>							I							saw				the				dog

Query	words

Key	words

Implementing	in	PyTorch

‣ nn.TransformerEncoder	can	be	built	out	of	nn.TransformerEncoderLayers,	
can	accept	an	input	and	a	mask	for	language	modeling:

‣You	cannot	use	these	for	Part	1,	only	for	Part	2

#	Inside	the	module;	need	to	fill	in	size	parameters

layers	=	nn.TransformerEncoderLayer([...])

transformer_encoder	=	nn.TransformerEncoder(encoder_layers,	num_layers=[...])

[.	.	.]

#	Inside	forward():	puts	negative	infinities	in	the	red	part

mask	=	torch.triu(torch.ones(len,	len)	*	float('-inf'),	diagonal=1)

output	=	transformer_encoder(input,	mask=mask)



LM	Evaluation

‣ Accuracy	doesn’t	make	sense	—	predicting	the	next	word	is	generally	
impossible	so	accuracy	values	would	be	very	low

‣ Evaluate	LMs	on	the	likelihood	of	held-out	data	(averaged	to	
normalize	for	length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity:	exp(average	negative	log	likelihood).	Lower	is	better
‣ Suppose	we	have	probs	1/4,	1/3,	1/4,	1/3	for	4	predictions
‣ Avg	NLL	(base	e)	=	1.242					Perplexity	=	3.464	<==	geometric	mean	of 
																																																																																									denominators

Preview:	Pre-training	and	BERT
‣ Transformers	are	usually	large	and	you	don’t	want	to	train	them	for	each	
new	task

the		movie		was			great

DT						NN				VBD					JJ

the		movie		was			great

movie		was	great						.

Train	on	language	modeling… then	“fine-tune”	that	model	on	your	
target	task	with	a	new	classification	layer

Transformer	Extensions

Scaling	Laws

Kaplan	et	al.	(2020)‣ Transformers	scale	really	well!



Transformer	Runtime
Tay	et	al.	(2020)‣ Even	though	most	

parameters	and	FLOPs	are	
in	feedforward	layers,	
Transformers	are	still	
limited	by	quadratic	
complexity	of	self-
attention

‣ Many	ways	proposed	
to	handle	this

Performers

Choromanski	et	al.	(2020)

‣ No	more	len2	term,	but	we	are	fundamentally	approximating	the	
self-attention	mechanism	(cannot	form	A	and	take	the	softmax)

Longformer

Beltagy	et	al.	(2021)

‣ Use	several	pre-specified	self-attention	patterns	that	limit	the	number	of	
operations	while	still	allowing	for	attention	over	a	reasonable	set	of	things

‣ Scales	to	4096-length	sequences

Longformer

Beltagy	et	al.	(2021)

‣ Loop	=	non-vectorized	version



Longformer

Beltagy	et	al.	(2021)

‣ Loop	=	non-vectorized	version
‣ Note	that	memory	of	full	SA	blows	up	but	runtime	doesn’t.	Why?

Vision	and	RL

‣ DALL-E	1:	learns	a	discrete	“codebook”	and	treats	an	image	as	a	
sequence	of	visual	tokens	which	can	be	modeled	autoregressively,	
then	decoded	back	to	an	image

Ramesh	et	al.	(2021),	Chen	et	al.	(2021)

‣ Decision	Transformer:	does	reinforcement	learning	by	Transformer-
based	modeling	over	a	series	of	actions

‣ Transformers	are	now	being	used	all	over	AI

Takeaways

‣ Transformers	are	going	to	be	the	foundation	for	the	much	of	the	rest	
of	this	class	and	are	a	ubiquitous	architecture	nowadays

‣ Many	details	to	get	right,	many	ways	to	tweak	and	extend	them,	but	
core	idea	is	the	multi-head	self	attention	and	their	ability	to	
contextualize	items	in	sequences

‣ Next:	machine	translation	and	seq2seq	models	(conditional	language	
modeling)


