CS388: Natural Language Processing Lecture 7: Transformers

Greg Durrett

Administrivia

- Project 2 due on Feb 14
- Final project spec posted soon

Project 1 Postmortem

- Explorations: what did you try and what did you find?
- ► Part 1: LR schedules / step sizes
- Part 1: better features
- ▶ Part 2: batching
- Part 2: other architectures

Recap: Attention

Step 1: Compute scores for each key

keys
$$k_i$$
[1, 0] [1, 0] [0, 1] [1, 0] query: $q = [0, 1]$ (we want to find 1s)
0 0 1 0

$$s_{i} = k_{i}^{\mathsf{T}} q$$

0 0 1

Step 2: softmax the scores to get probabilities $\boldsymbol{\alpha}$

0 0 1 0 => (1/6, 1/6, 1/2, 1/6) if we assume e=3

Step 3: compute output values by multiplying embs. by alpha + summing

result = sum($\alpha_i e_i$) = 1/6 [1, 0] + 1/6 [1, 0] + 1/2 [0, 1] + 1/6 [1, 0] = [1/2, 1/2]

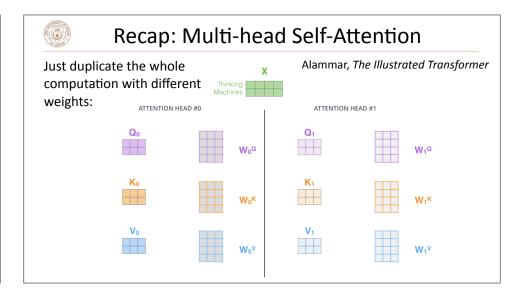
Recap: Self-Attention

$$E = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad W^{Q} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad K = E (W^{K}) = \begin{pmatrix} 10 & 0 \\ 10 & 0 \\ 0 & 10 \\ 0 & 10 \\ 10 & 0 \end{pmatrix}$$

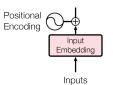
Scores $S = QK^T$ $S_{ij} = q_i \cdot k_j$ len x len = (len x d) x (d x len)

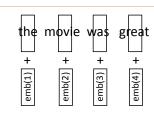
Final step: softmax to get attentions A, then output is AE

*technically it's A (EWV), using a values matrix V = EWV

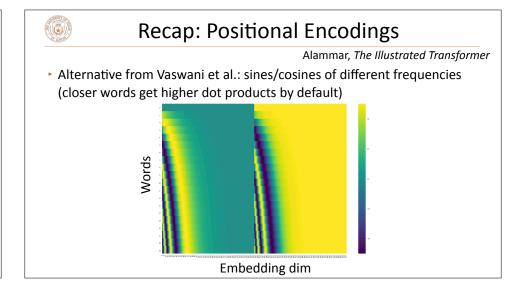


Recap: Positional Encodings





 Encode each sequence position as an integer, add it to the word embedding vector



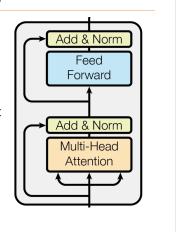
Transformers

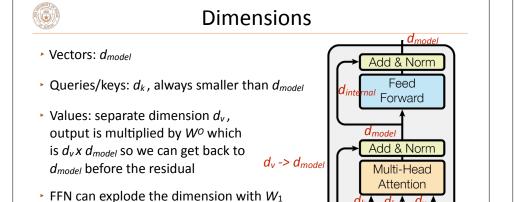
Architecture

 Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not needed in A4)



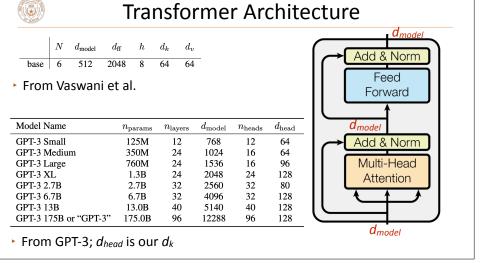


 d_{model}

Vaswani et al. (2017)

and collapse it back with W_2

 $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$



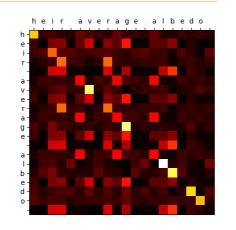
Transformer Architecture

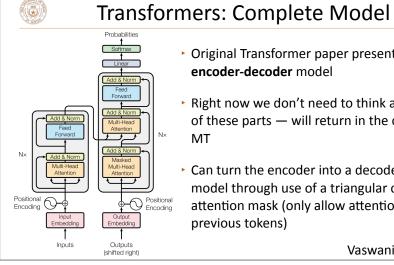
1	description	FLOPs / update	% FLOPS MHA	% FLOPS FFN	% FLOPS attn	% FLOPS logit
8	OPT setups					
9	760M	4.3E+15	35%	44%	14.8%	5.8%
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%
13	13B	4.1E+17	22%	69%	6.9%	1.6%
14	30B	9.0E+17	20%	74%	5.3%	1.0%
15	66B	9.5E+17	18%	77%	4.3%	0.6%
16	175B	2.4E+18	17%	80%	3.3%	0.3%

Credit: Stephen Roller on Twitter

Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to. E.g., the first "v" attends very heavily to itself (bright yellow box)
- On the HW: look to see if the attentions make sense!





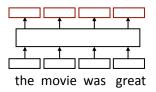
Original Transformer paper presents an

- Right now we don't need to think about both of these parts — will return in the context of ΜT
- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)

Vaswani et al. (2017)

Using Transformers

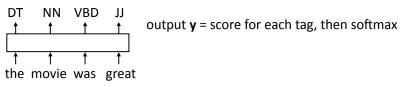
What do Transformers produce?



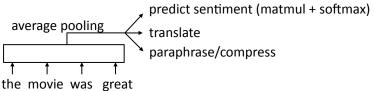
- Encoding of each word can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

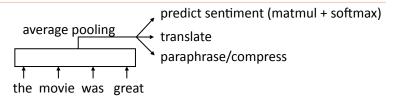
► Transducer: make some prediction for each element in a sequence



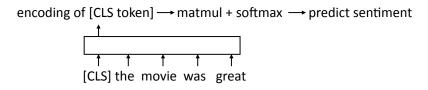
Classifier: encode a sequence into a fixed-sized vector and classify that



Transformer Uses

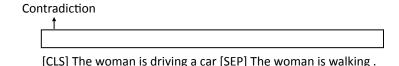


Alternative: use a placeholder [CLS] token at the start of the sequence. Because [CLS] attends to everything with self-attention, it can do the pooling for you!



Transformer Uses

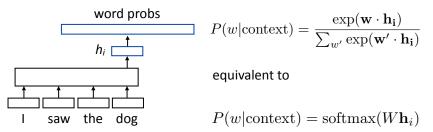
 Sentence pair classifier: feed in two sentences and classify something about their relationship



► Why might Transformers be particularly good at sentence **pair** tasks compared to something like a DAN?

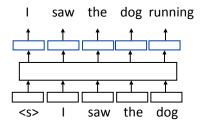
Transformer Language Modeling

Transformer Language Modeling

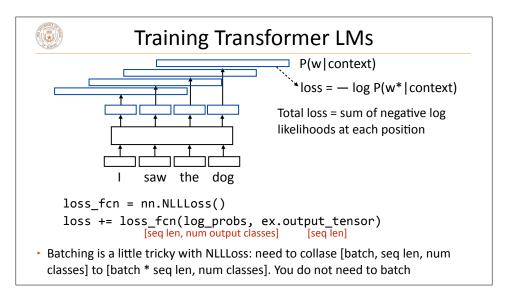


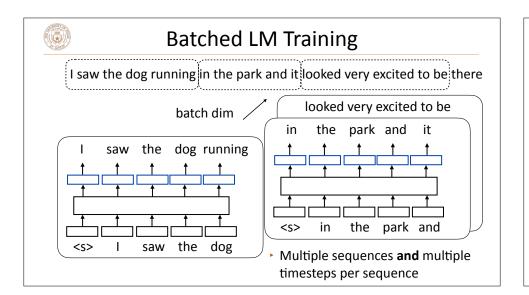
► W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Training Transformer LMs



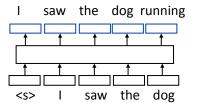
- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)





A Small Problem with Transformer LMs

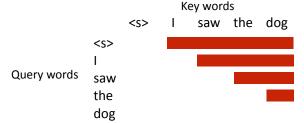
► This Transformer LM as we've described it will *easily* achieve perfect accuracy. Why?



With standard self-attention: "I" attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?

Attention Masking

What do we want to prohibit?



► We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

• nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

```
# Inside the module; need to fill in size parameters
layers = nn.TransformerEncoderLayer([...])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .]
# Inside forward(): puts negative infinities in the red part
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)
```

▶ You cannot use these for Part 1, only for Part 2

LM Evaluation

- Accuracy doesn't make sense predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

 $\frac{1}{n}\sum_{i=1}^n \log P(w_i|w_1,\ldots,w_{i-1})$

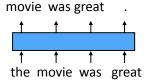
- ► Perplexity: exp(average negative log likelihood). Lower is better
 - ► Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators

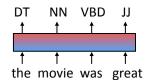
Preview: Pre-training and BERT

 Transformers are usually large and you don't want to train them for each new task

Train on language modeling...

then "fine-tune" that model on your target task with a new classification layer





Transformer Extensions

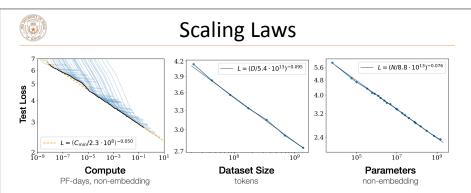
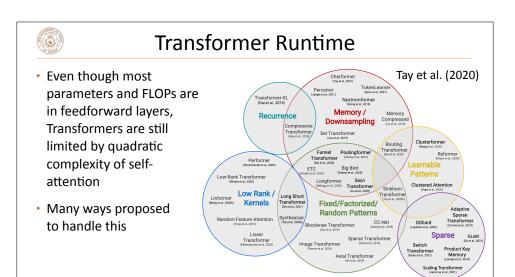
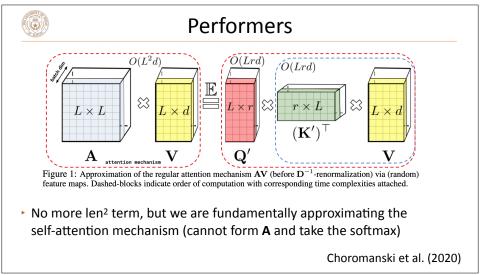


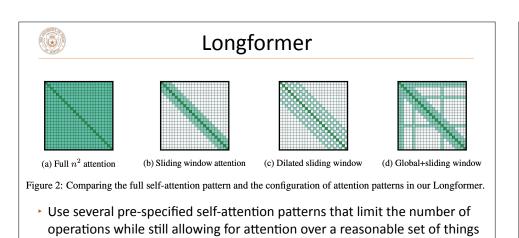
Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

► Transformers scale really well!

Kaplan et al. (2020)

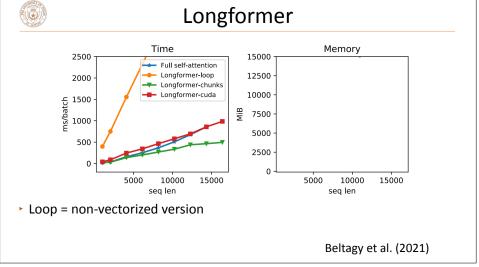




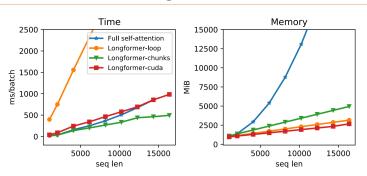


Beltagy et al. (2021)

Scales to 4096-length sequences



Longformer



- ► Loop = non-vectorized version
- Note that memory of full SA blows up but runtime doesn't. Why?

 Beltagy et al. (2021)

Vision and RL

- DALL-E 1: learns a discrete "codebook" and treats an image as a sequence of visual tokens which can be modeled autoregressively, then decoded back to an image
- Decision Transformer: does reinforcement learning by Transformerbased modeling over a series of actions
- ► Transformers are now being used all over AI

Ramesh et al. (2021), Chen et al. (2021)

Takeaways

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences
- Next: machine translation and seq2seq models (conditional language modeling)