Recall: Transformers

- Vectors: d_{model}
- Queries/keys: d_k, always smaller than d_{model}
- Values: separate dimension d_v, output is multiplied by W^o which is $d_v \times d_{\text{model}}$ so we can get back to d_{model} before the residual
- FFN can explode the dimension with W_1 and collapse it back with W_2
 \[
 \text{FFN}(x) = \max(0, wx_1 + b_1)w_2 + b_2
 \]

Recall: Training Transformer LMs

- Loss: $-\log P(w^* | \text{context})$
- Total loss = sum of negative log likelihoods at each position

\[
\text{loss}_\text{fcn} = \text{nn.NLLLoss()}
\]
\[
\text{loss} += \text{loss}_\text{fcn}(\log \text{probs, ex.output_tensor})
\]

- Batching is a little tricky with NLLLoss: need to collapse [batch, seq len, num classes] to [batch * seq len, num classes]. You do not need to batch
Today

- ELMo
- BERT
- Subword tokenization
- BERT results, BERT variants
- Applying BERT

What is pre-training?

- “Pre-train” a model on a large dataset for task X, then “fine-tune” it on a dataset for task Y
- Key idea: X is somewhat related to Y, so a model that can do X will have some good neural representations for Y as well
- ImageNet pre-training is huge in computer vision: learn generic visual features for recognizing objects
- GloVe can be seen as pre-training: learn vectors with the skip-gram objective on large data (task X), then fine-tune them as part of a neural network for sentiment/any other task (task Y)

GloVe is insufficient

- GloVe uses a lot of data but in a weak way
- GloVe gives a single embedding for each word is wrong

 they swing the bats
 they see the bats
- Identifying discrete word senses is hard, doesn’t scale. Hard to identify how many senses each word has
- How can we make our word embeddings more context-dependent? Use language model pretraining!
Context-dependent Embeddings

- Train a neural language model to predict the next word given previous words in the sentence, use the hidden states (output) at each step as word embeddings
- This is the key idea behind ELMo: language models can allow us to form useful word representations in the same way word2vec did

ELMo

- CNN over each word => RNN
- 4096-dim LSTMs
- 2048 CNN filters projected down to 512-dim
- Representation of visited (plus vectors from another LM running backwards)

ELMo

- Use the embeddings as a drop-in replacement for GloVe
- Huge gains across many high-profile tasks: NER, question answering, semantic role labeling (similar to parsing), etc.
- But what if the pre-training isn't just for the embeddings?

BERT
BERT

- AI2 made ELMo in spring 2018, GPT (transformer-based ELMo) was released in summer 2018, BERT came out October 2018
- Four major changes compared to ELMo:
 - Transformers instead of LSTMs
 - Bidirectional model with “Masked LM” objective instead of standard LM
 - Fine-tune instead of freeze at test time
 - Operates over word pieces (byte pair encoding)

Masked Language Modeling

- How to prevent cheating? Next word prediction fundamentally doesn’t work for bidirectional models, instead do masked language modeling
- BERT formula: take a chunk of text, mask out 15% of the tokens, and try to predict them
- Optimize $P(\text{Madagascar} \mid \text{John visited [MASK] yesterday})$

BERT

- ELMo is a unidirectional model (as is GPT): we can concatenate two unidirectional models, but is this the right thing to do?
- ELMo reprs look at each direction in isolation; BERT looks at them jointly

```
A stunning ballet dancer, Copeland is one of the best performers to see live.
```

BERT

- How to learn a “deeply bidirectional” model? What happens if we just replace an LSTM with a transformer?

```
ELMo (Language Modeling)
visited  Madag. yesterday ...
```

```
BERT
visited  Madag. yesterday ...
```

```
John visited Madagascar yesterday
```

```
John  visited Madagascar yesterday
```

- You could do this with a “one-sided” transformer, but this “two-sided” model can cheat

Devlin et al. (2019)
Next “Sentence” Prediction

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the “true” next
- BERT objective: masked LM + next sentence prediction

NotNext

Madagascar

enjoyed

like

Transformer

... Transformer

Devlin et al. (2019)

BERT Architecture

- BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads. Total params = 110M
- BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads. Total params = 340M
- Positional embeddings and segment embeddings, 30k word pieces
- This is the model that gets pre-trained on a large corpus

Devlin et al. (2019)

What can BERT do?

- Artificial [CLS] token is used as the vector to do classification from
- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece

Devlin et al. (2019)

Natural Language Inference

Premise
A boy plays in the snow
A man inspects the uniform of a figure
An older and younger man smiling

Hypothesis
entails
contradicts
neutral

A boy is outside
The man is sleeping
Two men are smiling and laughing at cats playing

Devlin et al. (2019)

Long history of this task: “Recognizing Textual Entailment” challenge in 2006 (Dagan, Glickman, Magnini)
Early datasets: small (hundreds of pairs), very ambitious (lots of world knowledge, temporal reasoning, etc.)
What can BERT do?

- How does BERT model sentence pairs?
 - Transformers can capture interactions between the two sentences, even though the NSP objective doesn’t really cause this to happen.

- Transformers can capture interactions between the two sentences, even though the NSP objective doesn’t really cause this to happen.

What can BERT NOT do?

- BERT cannot generate text (at least not in an obvious way)
- Can fill in MASK tokens, but can’t generate left-to-right (well, you could put MASK at the end repeatedly, but this is slow)
- Masked language models are intended to be used primarily for “analysis” tasks

Fine-tuning BERT

- Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5
- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don’t change much
- Often requires tricky learning rate schedules (“triangular” learning rates with warmup periods)

Subword Tokenization
Handling Rare Words

- Words are a difficult unit to work with. Why?
 - When you have 100,000+ words, the final matrix multiply and softmax start to dominate the computation, many params, still some words you haven’t seen...
 - Character-level models were explored extensively in 2016-2018 but simply don’t work well — becomes very expensive to represent sequences

Subword Tokenization

- Subword tokenization: wide range of schemes that use tokens that are **between characters and words** in terms of granularity
- These “word pieces” may be full words or parts of words
 - the _eco tax _port i co _in _Po nt - de - Bu is ...
 - _ indicates the word piece starting a word (can think of it as the space character).

Subword Tokenization

- Subword tokenization: wide range of schemes that use tokens that are **between characters and words** in terms of granularity
- These “word pieces” may be full words or parts of words
 - the _eco tax _port i co _in _Po nt - de - Bu is ...
 - _ indicates the word piece starting a word (can think of it as the space character).

Output: _le _port ique _eco taxe _de _Pont - de - Bui s

- Can achieve transliteration with this, subword structure makes some translations easier to achieve

Sennrich et al. (2016)

Byte Pair Encoding (BPE)

- Start with every individual byte (basically character) as its own symbol
- Count bigram character cooccurrences
- Merge the most frequent pair of adjacent characters

for i in range(num_merges):
 pairs = get_stats(vocab)
 best = max(pairs, key=pairs.get)
 vocab = merge_vocab(best, vocab)

- Doing 8k merges => vocabulary of around 8000 word pieces. Includes many whole words
- Most SOTA NMT systems use this on both source + target

Sennrich et al. (2016)
Byte Pair Encoding (BPE)

<table>
<thead>
<tr>
<th>Original: furyously</th>
<th>BPE: fur iously</th>
<th>Unigram LM: fur ious ly</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPE: .fur iously</td>
<td>BPE: .t ric y cles</td>
<td></td>
</tr>
<tr>
<td>Unigram LM: .fur ious ly</td>
<td>Unigram LM: .tri cycle s</td>
<td></td>
</tr>
</tbody>
</table>

What’s in the token vocab?

I’ve just found out that several of the anomalous GPT tokens (“TheNitromeFan”, “SolidGoldMagikarp”, “davidJI”, “Smartstocks”, “RandomRedditorWithNo”) are handles of people who are (competitively? collaboratively?) counting to infinity on a Reddit forum. I kid you not.

Tokenization Today

- **All pre-trained** models use some kind of subword tokenization with a tuned vocabulary; usually between 50k and 250k pieces (larger number of pieces for multilingual models)

- As a result, classical word embeddings like GloVe are **not used**. All subword representations are randomly initialized and learned in the Transformer models

BERT results, BERT variants
Evaluation: GLUE

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Train</th>
<th>Test</th>
<th>Task</th>
<th>Metrics</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sentence Tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoLA</td>
<td>8.5k</td>
<td>1k</td>
<td>acceptability</td>
<td>Matthews corr.</td>
<td>misc.</td>
</tr>
<tr>
<td>SST-2</td>
<td>67k</td>
<td>1.8k</td>
<td>sentiment</td>
<td>acc.</td>
<td>movie reviews</td>
</tr>
<tr>
<td>MRPC</td>
<td>3.7k</td>
<td>1.7k</td>
<td>paraphrase</td>
<td>acc./F1</td>
<td>news</td>
</tr>
<tr>
<td>STS-B</td>
<td>7k</td>
<td>1.4k</td>
<td>sentence similarity</td>
<td>Pearson/Spearman corr.</td>
<td>misc.</td>
</tr>
<tr>
<td>QQP</td>
<td>364k</td>
<td>391k</td>
<td>paraphrase</td>
<td>acc./F1</td>
<td>social QA questions</td>
</tr>
<tr>
<td>Inference Tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNLI</td>
<td>393k</td>
<td>20k</td>
<td>NLI</td>
<td>matched acc./mismatched acc.</td>
<td>misc.</td>
</tr>
<tr>
<td>QNLI</td>
<td>105k</td>
<td>5.4k</td>
<td>QA/NLI</td>
<td>acc.</td>
<td>Wikipedia</td>
</tr>
<tr>
<td>RTE</td>
<td>2.5k</td>
<td>3k</td>
<td>NLI</td>
<td>acc.</td>
<td>news, Wikipedia</td>
</tr>
<tr>
<td>WNLI</td>
<td>634</td>
<td>146</td>
<td>coreference/NLI</td>
<td>acc.</td>
<td>fiction books</td>
</tr>
</tbody>
</table>

Wang et al. (2019)

Results

<table>
<thead>
<tr>
<th>System</th>
<th>MNLI-(m/mm)</th>
<th>QQP</th>
<th>QNLI</th>
<th>SST-2</th>
<th>CoLA</th>
<th>STS-B</th>
<th>MRPC</th>
<th>RTE</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-OpenAI SOTA</td>
<td>80.6/80.1</td>
<td>66.1</td>
<td>82.3</td>
<td>93.2</td>
<td>35.0</td>
<td>81.0</td>
<td>86.0</td>
<td>61.7</td>
<td>74.0</td>
</tr>
<tr>
<td>BiLSTM+ELMo+Attn</td>
<td>76.4/76.1</td>
<td>64.8</td>
<td>79.9</td>
<td>90.4</td>
<td>36.0</td>
<td>73.3</td>
<td>84.9</td>
<td>56.8</td>
<td>71.0</td>
</tr>
<tr>
<td>OpenAI GPT</td>
<td>82.1/81.4</td>
<td>70.3</td>
<td>88.1</td>
<td>91.3</td>
<td>45.4</td>
<td>80.0</td>
<td>82.3</td>
<td>56.0</td>
<td>75.2</td>
</tr>
<tr>
<td>BERTBASE</td>
<td>84.6/83.4</td>
<td>71.2</td>
<td>90.1</td>
<td>93.5</td>
<td>52.1</td>
<td>85.8</td>
<td>88.9</td>
<td>66.4</td>
<td>79.6</td>
</tr>
<tr>
<td>BERTLARGE</td>
<td>86.7/85.9</td>
<td>72.1</td>
<td>91.1</td>
<td>94.9</td>
<td>60.5</td>
<td>86.5</td>
<td>89.3</td>
<td>70.1</td>
<td>81.9</td>
</tr>
</tbody>
</table>

- Huge improvements over prior work (even compared to ELMo)
- Effective at “sentence pair” tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Devlin et al. (2018)

RoBERTa

- “Robustly optimized BERT”
- 160GB of data instead of 16 GB
- Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them
- New training + more data = better performance

Liu et al. (2019)

ELECTRA

- Discriminator to detect replaced tokens rather than a generator to actually predict what those tokens are
- More efficient, strong performance

Clark et al. (2020)
DeBERTa

- Slightly better variant

\[A_{ij} = \{H_i, P_{ij}\} \times \{H_j, P_{ji}\}^T = H_i H_j^T + H_i P_{ji}^T + P_{ij} H_j^T + P_{ij} P_{ji}^T \]

That is, the attention weight of a word pair can be computed as a sum of four attention scores using disentangled matrices on their contents and positions as content-to-content, content-to-position, position-to-content, and position-to-position.

He et al. (2021)

Using BERT

- HuggingFace Transformers: big open-source library with most pre-trained architectures implemented, weights available

- Lots of standard models… and “community models”

Model architectures

1. BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova, 2018
2. GPT-1 (from OpenAI) released with the paper Improving Language Understanding by Generative Pre-Training by Radford et al., 2019
3. GPT-2 (from OpenAI) released with the paper Language Models are Unintuitive by Jeffrey Wu, Noam Israel, David Luan, Clemens Amaud AM and Ilya Sutskever, 2018
4. Transformer-XL (from Google/ODA) released with the paper Transformer-XL: Attending to Long Sequences by Zihang Dai, Ziheng Yang, Yiming Yang, Jiaxin Pan, and Christian Danelljan, 2019
5. XLNet (from Google/ODA) released with the paper Generative Pre-Training by Zejian Tang, Ziheng Dai, Yiming Yang, Jiaxin Pan, and Christian Danelljan, 2019
6. RoBERTa (from Facebook), released together with the paper RoBERTa: A Robustly Pre-trained Model by Yinhan Li, Naman Goyal, Jingfei Ye, Aidan N. Gomez, Guodong Hua, Mark Dredze, Quoc Le, 2019
7. DeBERTa (from Alibaba), released together with the paper DeBERTa: Pre-Training Deep Bidirectional Transformers by Zhifan Zheng, Jiajun Wu, Yuxiao Xie, Jianfeng Chen, Lingfei Wang, Luan Zhang, Yabin Wang, Junru Li, Junzhou Huang, and Tie-Yan Liu, 2020

Clark et al. (2019)

What does BERT learn?

- Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.

Clark et al. (2019)
Applying BERT

Two Tasks
- Compared to ELMo, BERT is very good at sentence-pair tasks
 - Paraphrase detection
 - Semantic textual similarity
 - Textual entailment
 - Question answering (not really a sentence pair, but it’s a pair of inputs)

SNLI Dataset
- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- One possible architecture:
 300D BiLSTM: 83% accuracy
 (Liu et al., 2016)
- One of the first big successes of LSTM-based classifiers (sentiment results were more marginal)

MNLI Dataset
- Drawn from multiple genres of text
- Premise
 - Fiction
 - The Old One always comforted Cadaan, except today.
 - Letters
 - Your gift is appreciated by each and every student who will benefit from your generosity.
 - Telephone Speech
 - Yes, now you know if everybody likes in August when everybody's on vacation or something we can dress a little more casual or
 - 9/11 Report
 - At the other end of Pennsylvania Avenue, people began to line up for a White House tour.

Hypothesis
- Label
 - neutral
 - contradicted
 - entailment
- Hypothesis
 - Cadaan knew the Old One very well.
 - Hundreds of students will benefit from your generosity.
 - August is a black out month for vacations in the company.

Bowman et al. (2015)
Williams et al. (2018)
How do models do it?

- Transformers can easily learn to spot words or short phrases that are transformed
- But, models are often overly sensitive to lexical overlap

Williams et al. (2018)

Question Answering

- Many types of QA:
- We’ll focus on factoid questions being answered from text
 - E.g., “What was Marie Curie the first female recipient of?” — unlikely you would have this answer in a database
 - Not appropriate: “When was Marie Curie born?” — probably answered in a DB
 - Not appropriate: “Why did World War II start?” — no simple answer

SQuAD

Q: What was Marie Curie the first female recipient of?

Passage: One of the most famous people born in Warsaw was Marie Skłodowska-Curie, who achieved international recognition for her research on radioactivity and was the first female recipient of the Nobel Prize. Famous musicians include Władysław Szpilman and Frédéric Chopin. Though Chopin was born in the village of Żelazowa Wola, about 60 km (37 mi) from Warsaw, he moved to the city with his family when he was seven months old. Casimir Pulaski, a Polish general and hero of the American Revolutionary War, was born here in 1745.

Answer = Nobel Prize

- Assume we know a passage that contains the answer. More recent work has shown how to retrieve these effectively (will discuss when we get to QA)

SQuAD

Q: What was Marie Curie the first female recipient of?

Passage: One of the most famous people born in Warsaw was Marie Skłodowska-Curie, who achieved international recognition for her research on radioactivity and was the first female recipient of the Nobel Prize. ...

- Predict answer as a pair of (start, end) indices given question q and passage p; compute a score for each word and softmax those

\[
P(\text{start} | q, p) = 0.01 \quad 0.01 \quad 0.01 \quad 0.85 \quad 0.01
\]

\[
P(\text{end} | q, p) = \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow
\]

recipient of the Nobel Prize.

P(\text{end} | q, p) = same computation but different params
What was Marie Curie the first female recipient of ? [SEP] One of the most famous people born in Warsaw was Marie ...

- In a couple lectures, we will look at what BERT learns when trained on this kind of data

Devlin et al. (2019)

Takeaways

- Pre-trained models and BERT are very powerful for a range of NLP tasks
- These models have enabled big advances in NLI and QA specifically
- Next time: pre-trained decoders (GPT-3) and encoder-decoder models (T5)