CS388: Natural Language Processing
Lecture 9: Pre-trained Decoders, GPT-3

Announcements

‣ P2 due today
‣ Final project proposals due Feb 23
‣ FP samples posted on course website

Recap: BERT Objective
‣ Input: [CLS] Text chunk 1 [SEP] Text chunk 2
‣ BERT objective: masked LM + next sentence prediction
‣ Best version of this: DeBERTa, very good at NLI/QA/classification tasks

Devlin et al. (2019)

Today
‣ Seq2seq pre-trained models (BART, T5): how can we leverage the same kinds of ideas we saw in BERT for seq2seq models like machine translation?
‣ GPT-2/GPT-3: scaling language models further
‣ Prompting: a new way of using large language models without taking any gradient steps
Seq2seq Pre-trained Models: BART, T5

How do we pre-train seq2seq models?

- LMs $P(w)$: trained unidirectionally
- Masked LMs: trained bidirectionally but with masking
- How can we pre-train a model for $P(y|x)$?
- Well, why was BERT effective?
 - Predicting a mask requires some kind of text “understanding”:
 - What would it take to do the same for sequence prediction?

- How can we pre-train a model for $P(y|x)$?
- Requirements: (1) should use unlabeled data; (2) should force a model to attend from y back to x

BART

- Token Masking
- Sentence Permutation
- Document Rotation
- Token Deletion
- Text Infilling

Several possible strategies for corrupting a sequence are explored in the BART paper

Lewis et al. (2019)
BART

- Sequence-to-sequence Transformer trained on this data: permute/make/delete tokens, then predict full sequence autoregressively

BERT vs. BART

- BERT: only parameters are an encoder, trained with masked language modeling objective. Cannot generate text or do seq2seq tasks
- BART: both an encoder and a decoder. Can also use just the encoder wherever we would use BERT

BART for Summarization

- Pre-train on the BART task: take random chunks of text, noise them according to the schemes described, and try to “decode” the clean text
- Fine-tune on a summarization dataset: a news article is the input and a summary of that article is the output (usually 1-3 sentences depending on the dataset)
- Can achieve good results even with few summaries to fine-tune on, compared to basic seq2seq models which require 100k+ examples to do well

BART for Summarization: Outputs

This is the first time anyone has been recorded to run a full marathon of 42.195 kilometers (approximately 26 miles) under this pursued landmark time. It was not, however, an officially sanctioned world record, as it was not an “open race” of the IAAF. His time was 1 hour 59 minutes 40.2 seconds. Kipchoge ran in Vienna, Austria. It was an event specifically designed to help Kipchoge break the two hour barrier.

Kenyan runner Eliud Kipchoge has run a marathon in less than two hours.
BART for Summarization: Outputs

PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.

Power has been turned off to millions of customers in California as part of a power shutoff plan.

Lewis et al. (2019)

T5

- Pre-training: similar denoising scheme to BART (they were released within a week of each other in fall 2019)

Original text

Thank you for inviting me to your party last week.

Inputs

Thank you <x> me to your party <y> week.

Targets

<x> for inviting <y> last <z>

Raffel et al. (2019)

T5

<table>
<thead>
<tr>
<th>Number of tokens</th>
<th>Repeats</th>
<th>GLUE</th>
<th>CNNDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ Full dataset</td>
<td>0</td>
<td>83.28</td>
<td>19.24</td>
</tr>
<tr>
<td>220</td>
<td>64</td>
<td>82.87</td>
<td>19.19</td>
</tr>
<tr>
<td>227</td>
<td>256</td>
<td>82.62</td>
<td>19.20</td>
</tr>
<tr>
<td>225</td>
<td>1,024</td>
<td>79.55</td>
<td>18.57</td>
</tr>
<tr>
<td>223</td>
<td>4,096</td>
<td>76.34</td>
<td>18.33</td>
</tr>
</tbody>
</table>

EnDe EnFr EnRo

26.98 39.82 27.65
26.83 39.74 27.63
27.02 39.71 27.33
26.38 39.56 26.80
26.37 38.84 25.81

summarization machine translation

- Colossal Cleaned Common Crawl: 750 GB of text
- We still haven’t hit the limit of bigger data being useful for pre-training: here we see stronger MT results from the biggest data

Raffel et al. (2019)

Successes of T5

- How can we handle a task like QA by framing it as a seq2seq problem?

Dataset: SQuAD 1.1

Input

At what speed did the turbine operate? (Nikola Tesla) On his 50th birthday in 1906, Tesla demonstrated his 200 horsepower (150 kilowatts) 16,000 rpm bladeless turbine. ...

Output

16,000 rpm

- Format: Question \n Passage —> Answer

encoder decoder

Raffel et al. (2019)
UnifiedQA

<table>
<thead>
<tr>
<th>Dataset</th>
<th>NarrativeQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>What does a drink from Narcissus's spring cause the drinker to do? \nMercury has awakened Echo, who weeps for Narcissus, and states that a drink from Narcissus's spring causes the drinkers to "Grow dotingly enamored of themselves." ...</td>
</tr>
<tr>
<td>Output</td>
<td>fall in love with themselves</td>
</tr>
</tbody>
</table>

Abstractive question, requires generating free-form answer

- Past work: different architectures for every QA formulation. (Span selection, answer generation, multiple choice, ...)
- Now: one 11B parameter T5 model

Khashabi et al. (2020)

Takeaways

- BART and T5 are useful for all sorts of seq2seq tasks involving language — so if you were going to use a seq2seq model, use one of these. (Caveat: need specialized models for language-to-code, like PLBART and CodeT5)
- UnifiedQA suggests that big generative models are good at generalizing across tasks and even to new tasks (although QA results have a long way to go)
- If we have a strong enough pre-trained model and train on enough tasks, can we generalize to new tasks?
- How do we specify those new tasks if they’re not close to tasks we’ve already run on?
- Answer: prompting. But to do that well, we’ll need to scale up further

GPT
OpenAI GPT/GPT2

- Very large language models using the Transformer architecture
- Straightforward left-to-right language model, trained on raw text
- GPT2: trained on 40GB of text

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Layers</th>
<th>d_{model}</th>
</tr>
</thead>
<tbody>
<tr>
<td>117M</td>
<td>12</td>
<td>768</td>
</tr>
<tr>
<td>345M</td>
<td>24</td>
<td>1024</td>
</tr>
<tr>
<td>762M</td>
<td>36</td>
<td>1280</td>
</tr>
<tr>
<td>GPT-2</td>
<td>48</td>
<td>1600</td>
</tr>
</tbody>
</table>

By far the largest of these models trained when it came out in March 2019
Because it's a language model, we can generate from it

Radford et al. (2019)

Pre-Training Cost (with Google/AWS)

- BERT: Base $500, Large $7000
- GPT-2 (as reported in other work): $25,000
- This is for a single pre-training run...developing new pre-training techniques may require many runs
- Fine-tuning these models can typically be done with a single GPU (but may take 1-3 days for medium-sized datasets)

Pushing the Limits: GPT-3

- 175B parameter model: 96 layers, 96 heads, 12k-dim vectors
- Trained on Microsoft Azure, estimated to cost roughly $10M

Brown et al. (2020)
Decoding Methods

Decoding Strategies

- **Decoding Methods**

- **Decoding Strategies**

 - LMs place a distribution $P(y_i | y_1, ..., y_{i-1})$
 - seq2seq models place a distribution $P(y_i | x, y_1, ..., y_{i-1})$
 - Generation from both models looks similar; how do we do it?
 - Option 1: max $y_i P(y_i | y_1, ..., y_{i-1})$ — take greedily best option
 - Option 2: use beam search to find the sequence with the highest prob.
 - Option 3: sample from the model; draw y_i from that distribution
 - Machine translation: use beam search. The top-scoring hypothesis is usually a great translation

- **Degeneration**

 - Beam search fails because the model is locally normalized
 - Let’s look at all the individual decisions that get made here
 - $P(\text{Nacional} | \ldots \text{Universidad})$ is high
 - $P(\text{Autónoma} | \ldots \text{Universidad Nacional})$ is high
 - $P(\text{de} | \ldots \text{Universidad Nacional Autónoma})$ is high
 - $P(\text{México} | \text{Universidad Nacional Autónoma de})$ is high
 - $P(/ | \ldots \text{México})$ and $P(\text{Universidad} | \ldots \text{México} /)$ — these probabilities may be low. But those are just 2/6 words of the repeating fragment
 - Each word is likely given the previous words but the sequence is bad

- **Story generation (this is with GPT-2):**

 - **Context:** In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously unexplored valley in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.
 - **Beam Search, $b=32$:**
 - "The study, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), was conducted by researchers from the Universidad Nacional Autónoma de México (UNAM) and the Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de ..."
 - **Pure Sampling:** They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town, and they speak huge, beautiful, paradisical Bolivian linguistic thing. They say, "Lunch, marge." They don’t tell what the lunch is," director Professor Chuperas Omwell told Sky News. "They’ve only been talking to scientists, like we’re being interviewed by TV reporters. We don’t even stick around to be interviewed by TV reporters. Maybe that’s how they figured out that they’re cosplaying as the Bolivian Cavalleros."
 - Beam search degenerates and starts repeating. If you see a fragment repeated 2-3x, it has very high probability to keep repeating
 - Sampling is too noisy — introduces many grammatical errors

- **Holtzman et al. (2019)**
Drawbacks of Sampling

- **Sampling is “too random”**

 Pure Sampling: They were cattle called Bolivian Cavelleros; they live in a remote desert uninterrupted by town and they speak huge, beautiful, paradisical Bolivian linguistic thing. They say, “Lunch, mate.” They don’t tell what the lunch is.” director Professor Chuperas Omwell told Sky News. “They’ve only been talking to scientists, like we’re being interviewed by TV

 \[P(y \mid \text{they live in a remote desert uninterrupted by}) \]

 - 0.01 roads
 - 0.01 towns
 - 0.01 people
 - 0.005 civilization
 - 0.0005 town

 Good options, maybe accounting for 90% of the total probability mass. So a 90% chance of getting something good

 Long tail with 10% of the mass

 [Holtzman et al. (2019)]

Nucleus Sampling

- Define a threshold \(p \). Keep the most probable options account for \(p \% \) of the probability mass (the nucleus), then sample among these.

- To implement: sort options by probability, truncate the list once the total exceeds \(p \), then renormalize and sample from it

 \[P(y \mid \text{they live in a remote desert uninterrupted by}) \]

 - 0.01 roads
 - 0.01 towns
 - 0.01 people
 - 0.005 civilization

 Cut off after \(p\% \) of mass

 [Holtzman et al. (2019)]

Decoding Strategies

- LMs place a distribution \(P(y_i \mid y_1, \ldots, y_{i-1}) \)

- seq2seq models place a distribution \(P(y_i \mid x, y_1, \ldots, y_{i-1}) \)

- How to generate sequences?
 - Option 1: \(\max y_i P(y_i \mid y_1, \ldots, y_{i-1}) \) — take greedily best option
 - Option 2: use beam search to find the sequence with the highest prob.
 - Option 3: sample from the model; draw \(y \) from that distribution
 - Option 4: nucleus sampling

 [Holtzman et al. (2019)]

GPT-3

- Story completion demo:
 Different decoding strategies
Preview: Prompting, In-Context Learning

Pre-GPT-3: Fine-tuning

- Fine-tuning: this is the “normal way” of doing learning in models like GPT-2
- Requires computing the gradient and applying a parameter update on every example
- This is super expensive with 175B parameters

GPT-3: Few-shot Learning

- GPT-3 proposes an alternative: in-context learning. Just uses the off-the-shelf model, no gradient updates
- This procedure depends heavily on the examples you pick as well as the prompt ("Translate English to French")
GPT-3

<table>
<thead>
<tr>
<th>Model</th>
<th>Layers</th>
<th># of Heads</th>
<th>d_{model}</th>
<th># of Parameters (in billions)</th>
<th>Batch Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaLM 8B</td>
<td>32</td>
<td>16</td>
<td>4096</td>
<td>8.63</td>
<td>256 → 512</td>
</tr>
<tr>
<td>PaLM 62B</td>
<td>64</td>
<td>32</td>
<td>8192</td>
<td>62.50</td>
<td>512 → 1024</td>
</tr>
<tr>
<td>PaLM 540B</td>
<td>118</td>
<td>48</td>
<td>18432</td>
<td>540.35</td>
<td>512 → 2048</td>
</tr>
</tbody>
</table>

PaLM

- “Pathways Language Model” from Google — 540B parameters!
- Much of the paper is about data curation and datacenter networking

<table>
<thead>
<tr>
<th>Model</th>
<th>Avg NLG</th>
<th>Avg NLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT-3 175B</td>
<td>52.9</td>
<td>65.4</td>
</tr>
<tr>
<td>GLaM 64B/64E</td>
<td>58.4</td>
<td>68.7</td>
</tr>
<tr>
<td>PaLM 8B</td>
<td>41.5</td>
<td>59.2</td>
</tr>
<tr>
<td>PaLM 62B</td>
<td>57.7</td>
<td>67.3</td>
</tr>
<tr>
<td>PaLM 540B</td>
<td>63.9</td>
<td>74.7</td>
</tr>
</tbody>
</table>

Prompts

- Prompts can help induce the model to engage in certain behavior
- In the GPT-2 paper, “tl;dr:” (too long; didn’t read) is mentioned as a prompt that frequently shows up in the wild indicating a summary
- tl;dr is an indicator that the model should “switch into summary mode” now — and if there are enough clean instances of tl;dr in the wild, maybe the model has been trained on a ton of diverse data?
- Good prompt + a few training examples in-context = strong task performance?

Promoting

- Current training: GPT-3/PaLM trained on the web
- Current testing: feed in a very specific prompt and/or a set of in-context examples
- Two goals:
 1. Unify pre-training and testing phases
 2. Exploit data for downstream tasks — why are we trying to do question answering while ignoring all of the existing QA datasets?
- Instruction tuning: fine-tune on supervised tasks after pre-training (more in a few lectures)
- Let’s see how an instruction-tuned GPT-3 works
Prompts

Prompting demo: QA, Math QA, etc.

Brown et al. (2020)

Ethical Issues

Bias and Toxicity

- “Toxic degeneration”: systems that generate toxic stuff

<table>
<thead>
<tr>
<th>GENERATION OPTIONS:</th>
<th>Toxicity:</th>
<th>Work Safe</th>
<th>Toxic</th>
<th>Very Toxic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model: GPT-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prompt: I'm sick of all the p.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I'm sick of all the politically correct stuff the media are telling you: you are sick of the prejudiced white trash [Trump supporters]...!

- System trained on a big chunk of the Internet: conditioning on “SJW”, “black” gives the system a chance of recalling bad stuff from its training data

https://toxicdegeneration.allenai.org/

Stochastic Parrots (about LMs generally)

- Paper (that included authors at Google who were subsequently fired) about dangers of large language models

- **Claim 1**: environmental cost is disproportionately born by marginalized populations, who aren’t even well-served by these tools

- **Claim 2**: massive data is fundamentally challenging to audit, contains data that is biased and is only a snapshot of a single point in time

- **Claim 3 (what we’ll focus on today)**: these models are not grounded in meaning — when they generate an answer to a question, it is merely by memorizing cooccurrence between symbols

Bender, Gebru, McMillan-Major, Shmitchell (2021)
Stochastic Parrots

| Question: What is the name of the Russian mercenary group? |
| Answer: Wagner group. |
| Question: Where is the Wagner group? |
| Answer: In Syria. |

Answer: A Russian citizen, Dmitry Utkin. He was born in 1971 and lives in Moscow. He has been a member of the Russian parliament since 2016. He is a former officer of the Main Intelligence Directorate (GRU) of Russia’s General Staff. He was also a commander of the special forces unit “Voskhod” (East). The unit was deployed to Chechnya and fought against separatists there in 1994–1996. After that, he served as an adviser to the head of Chechnya, Ramzan Kadyrov, and later became his deputy. In 2004–2005, he commanded a battalion in Chechnya and participated in fighting against insurgents there. In 2008–2009, he commanded another battalion in Achkhsa and South Ossetia during Russia’s war with Georgia over these two breakaway regions. Since 2014, he has been leading military units fighting against Ukrainian government forces on behalf of Russia-backed separatists in eastern Ukraine. According to open sources, Utkin is currently living in Moscow but travels frequently to Syria where his troops are fighting on behalf of Bashar al-Assad’s regime against anti-government forces there.

Takeaways

- We are likely to assume the model is producing factual information and presenting it in a coherent way, but this is our interpretation we project on the model.
- Risks: medical diagnosis ("What do I have if I have X, Y, and Z symptoms?") could seem possible but cause serious harm.
- Pre-trained seq2seq models and generative language models can do well at lots of generation tasks.
- Decoding strategy can matter a lot (beam search vs. sampling).
- Prompting is a way to harness their power and learn to do many tasks with a single model. Can be done without fine-tuning.

Bender, Gebru, McMillan-Major, Shmitchell (2021)