
Multiclass Classification

Running example Suppose we want to train a multiclass classifier to classify sentences as being headlines
of one of several types. We have the possible labels Y = HEALTH, SPORTS, SCIENCE.

Furthermore, take as an example the sentence:

too many drug trials, too few patients

Finally, suppose our feature space is a set of three indicators:
[I[sentence contains drug], I[sentence contains patients], I[sentence contains baseball]]
which take the values [1, 1, 0] on the example above.

Different weights In the “different weights” version of multiclass perceptron, we define our features as
a function f(x) which returns a “base set” of features (three features in the above examples). Each class
y ∈ Y has a distinct weight vector wy that scores how likely an example is to be in that class. Prediction
consists of taking the dot product of each weight vector with the features and returning the highest scoring
class:

argmax
y

w>
y f(x)

In total, we end up with a number of parameters equal to the number of features in f times the number of
classes (3 x 3 = 9 total parameters for our running example).

We can also write this in a vectorized form using a matrix W consisting of stacked wy vectors:

P (y | x) = softmax(W f(x))

where W is a 3x3 matrix in this case and softmax operates on a vector of logits (unnormalized scores for
each class) as follows:

softmax(l) =
eli∑
j e

lj

to return a probability distribution over the labels y. This interpretation gives us the output (classification)
layer of a standard neural network.

Different features The Eisenstein book uses another view of classification where we think of each possi-
ble label as inducing a different set of features. Our feature vector in our running example now consists of
9 features obtained by conjoining each base feature with the label:

f(x, y) = [I[sentence contains drug ∧ y = HEALTH], I[sentence contains patients ∧ y = HEALTH],
I[sentence contains baseball ∧ y = HEALTH], I[sentence contains drug ∧ y = SPORTS],
I[sentence contains patients ∧ y = SPORTS], I[sentence contains baseball ∧ y = SPORTS],
I[sentence contains drug ∧ y = SCIENCE], I[sentence contains patients ∧ y = SCIENCE],
I[sentence contains baseball ∧ y = SCIENCE]]

Now, on this example, we have
f (x = too few drug trials, too few patients, y = HEALTH) = [1, 1, 0, 0, 0, 0, 0, 0, 0]
f (x = too few drug trials, too few patients, y = SPORTS) = [0, 0, 0, 1, 1, 0, 0, 0, 0]
f (x = too few drug trials, too few patients, y = SCIENCE) = [0, 0, 0, 0, 0, 0, 1, 1, 0]

1



Under this framework, we now have a single weight vector w. This vector can be thought of as containing
blocks of features corresponding to scores associating each feature with each class label. This is equivalent
to simply concatenating the wy vectors from the “different weights” view.

We find the highest scoring class by extracting features for each class in turn and taking the dot product
with the feature vector:

argmax
y

w>f(x, y)

Multiclass Perceptron See Algorithm 3 in Section 2.3.1 the textbook. This is the “different features”
form of perceptron exactly as we discussed in lecture (with θ instead of w).

Multiclass Logistic Regression: Different weights

P (y = ŷ | x) =
exp(w>

ŷ f(x))∑
y′∈Y exp(w>

y′f(x))

Using calculus, we can compute the gradient of the logistic regression loss (negative log likelihood) L
on an example (x(i), y(i)). This breaks into two cases, one for wy(i) (the weight vector associated with the
ground-truth label) and one for weight vectors of other classes:

∂L(x(i), y(i))

∂wy(i)
= −f(x(i)) + P (y(i) | x(i))f(x(i))

∂L(x(i), y(i))

∂wỹ
= P (ỹ | x(i))f(x(i))

where ỹ denotes any y ∈ Y except for y(i). P (y | x(i)) is the probability the model assigns to class y. (This
term also shows up in the binary logistic regression case.) As always, note that the weights are updated by
subtracting off the gradient. You can verify that if the model is nearly correct, the update ends up being
very close to zero, whereas if almost all of the mass is on the wrong label, you have an update very close
to the multiclass perceptron update: we add the feature vector to the correct class and subtract it from the
incorrectly-predicted class.

Multiclass Logistic Regression: Different features

P (y = ŷ | x) = exp(w>f(x, ŷ))∑
y′∈Y exp(w>f(x, y′))

Section 2.5 in the book presents this algorithm, but is different in two major ways from the in-class ver-
sion. First, we do not include regularization, since it usually makes a fairly minor difference and traditional
notions of regularization don’t apply to our deep learning models. Second, the notation is a bit different than
what we’ve used.

Using our notation, the gradient of the logistic regression loss (negative log likelihood) on an example
(x(i), y(i)) is:

−f(x(i), y(i)) +
∑
y′∈Y

P (y′ | x(i))f(x(i), y′)

where P (y | x(i)) is the probability the model assigns to class y. (This term also shows up in the binary
logistic regression case.)

2


