
Project 3: Dataset Artifacts

Academic Honesty: Please see the course syllabus for information about collaboration in this course.
While you may discuss the assignment with other students, all work you submit must be your own!

Goals The primary goal with this assignment is to give you understanding of how Transformer models
learn spurious correlations on datasets for natural language inference (NLI), then give you a sense of some
possible techniques to improve these spurious correlations. Compared to past projects, the emphasis is much
more heavily on looking at and analyzing data compared to building models.

General Description Pre-trained models can often achieve high performance on benchmark datasets, but
are they really “solving” the tasks these datasets encapsulate? Sometimes a model can work extremely well
even when presented with a modified version of the input where it should not be possible to predict the right
answer, like hypothesis-only baselines in NLI (Poliak et al., 2018; Gururangan et al., 2018), which calls
into question what the model is even learning. Sometimes it is possible to find or construct examples very
similar to those in the training data where the model achieves surprisingly low performance. These include
“contrast examples” (Gardner et al., 2020; Li et al., 2020) which are produced by modifying real examples
in a small way, as well as adversarial examples (Jia and Liang, 2017) and checklist examples (Ribeiro et al.,
2020).

These observations all stem from the fact that a model may achieve high performance on a dataset by
learning spurious correlations, also called dataset artifacts. The model is then expected to fail in settings
where these artifacts are not present, which may include real-world testbeds of interest.

Your task is to investigate the performance of a pre-trained model on the Stanford NLI (SNLI) dataset
(Bowman et al., 2015). You will analyze the model’s performance and shortcomings, try to improve it,
and describe whether what you did fixed things.

Dataset and Code

Installation instructions Please follow the instructions in the GitHub repository here: https://github.
com/gregdurrett/fp-dataset-artifacts. Note that this repository also supports SQuAD,
which you will not be using. You only need to pay attention to the NLI/SNLI commands.

Starter code In the repository above, you’ll find run.py, a script which implements basic model training
and evaluation using the Hugging Face transformers library. For information on the arguments to
run.py and hints on how to extend its behavior, see the comments in the source and the repository’s
README.

Hugging Face The skeleton code is heavily based on Hugging Face transformers, which is an open-
source library providing implementations of pre-trained deep learning models for a variety of (mainly NLP)
tasks. If you want to get more familiar with transformers, you can check out the examples in their
GitHub repository.

Computational resources Even with the ELECTRA-small model, training with CPU only on a large
dataset like SNLI can be time-consuming. Please see the section on Compute at the end of the project spec
for some options.
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Part 1: Analyzing Artifacts (50 points)

You should start by doing some analysis of the ELECTRA-small (Clark et al., 2020) model on the SNLI
dataset. ELECTRA has the same architecture as BERT with an improved training method, and the small
model is computationally easier to run than larger models. Your goal in this part is to identify and attempt
to quantify a spurious correlation that a fine-tuned ELECTRA model picks up on. Although you can
try to study something unexplored if you want, we recommend you simply reproduce and extend the
analysis from prior work using one of the techniques below.

There are a few different analyses you can do. You should pick one.

• (changing model) Use model ablations like hypothesis-only models for NLI (Gururangan et al., 2018;
Poliak et al., 2018). Other simplifications are possible too.

• (changing data) Use contrast sets (Gardner et al., 2020); these “minimal pair” examples can reveal
features of the models’ behavior by altering labels without altering other correlations. A contrast set
was constructed for SNLI by Li et al. (2020).

• (statistical test) Use the “competency problems” framework: find spurious n-gram correlations with
answers (Gardner et al., 2021).

Loading your own data See https://huggingface.co/docs/datasets/v1.1.3/loading_
datasets.html#json-files for instructions on how to load datasets from json. You will want to
prepare a dataset with the form described in the comment of run.py.

Writing up Part 1 You should train an ELECTRA-small model, then analyze it using one of these frame-
works, reporting necessary numbers and describing what they tell us about spurious correlations. Specifi-
cally, your report should address the following points:

1. What artifact, bias, or spurious correlation are you testing for? Describe it as precisely as possible.

2. What experiments did you set up in order to test this? Describe the models and datasets you
used. Note: you do not need to give significant details about standard models like ELECTRA or
standard datasets like SNLI (e.g., number of examples) except insofar as these details are important to
your analysis (e.g., the length distribution of hypotheses in the dev set could be meaningful if you’re
investigating correlations with length).

3. Do you see evidence for presence of that artifact? Report evidence in graphs and tables. You should
take care to compare anything you run to appropriate baselines to develop your argument around it.

Part 2: Fixing It (50 points)

Pick a method to try and improve the issues you identified in Part 1. Some options are listed below, following
the discussion in lecture:

• Focusing learning on hard subsets of data or data where the gold label distribution is ambiguous.
Dataset cartography (Swayamdipta et al., 2020) is a good framework for identifying such examples,
but there are many options (Yaghoobzadeh et al., 2021; Nie et al., 2020; Meissner et al., 2021).
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• Ensemble-based debiasing using artifact experts: train a weak or partial model to learn the correlations,
then train your model to learn the residual of that model (He et al., 2019) or otherwise remove it from
output distribution (Clark et al., 2019; Zhou and Bansal, 2020; Utama et al., 2020; Sanh et al., 2021).

• Training on adversarial data, including using challenge sets directly or adversarial data augmentation
(Liu et al., 2019; Zhou and Bansal, 2020; Morris et al., 2020)

You are allowed to use open-source GitHub repositories associated with these papers if you want. However,
we do not guarantee that any of these work or are easy to get working; you might find that implementing
the ideas yourself in your own code framework is actually easier, as most of them are not too challenging to
code up.

Writing up Part 2 Evaluate your fix. How effective is it? Did you manage to address the errors you were
targeting? How broad was this fix; did it address other related errors or issues as well? Did it make overall
dataset performance go up or down? It will be very hard to get overall much stronger performance on
an in-domain test set, but well-implemented projects should be able to show some improvement either on
a subset of examples or on generalization to a challenging setting.

Report both results in tables as well as any other pertinent analysis to back things up, such as results in
your Part 1 setting or results on subsets of the data. If you tried multiple things, analyze the contribution
from each one with an ablation study. These should be minimal changes to the same system; try running
things with just one aspect different in order to assess how important that aspect is. If you just had one
change, then make sure that you clearly report results from your baseline and your improved system.

Compute

The most important thing is to only run large-scale experiments when needed. Debug things on small
amounts of data. Depending on what dataset you have and what resources you’re using, you may need
to let your initial model train for a few hours to get a usable initial result, and your final experiments
may be similarly time-consuming, but ideally much of what you do in the middle won’t need to involve
waiting hours for models to train. Note: you do not need to stick with the default parameters we give you,
and training for less time or on less data than in SNLI may still give reasonable performance to do your
investigation.

Using Checkpoints The Hugging Face trainer checkpoints the models periodically. As a result, you can
start a long training run, leave it going for a while, and evaluate how much of that time was actually needed
to get good performance. If it worked well after only two hours, you’ll know that for the future. Ideally, you
can then do further experimentation more quickly or even start future runs from checkpoints.

GCP Google Cloud Platform offers free credits upon signing up for a new account, which are more than
sufficient to run some large-scale experiments for the course. The course staff are able to provide limited
support on how to use GCP, but you’ll mostly have to figure this out yourself.

Google Colab Google Colab is another resource for exploring training on GPUs. You can see how to get
started with HuggingFace on Colab here: https://github.com/huggingface/transformers/
tree/master/notebooks

You can also look into Colab Pro, which is a paid membership but gives you access to more resources.
As of February 2023, it’s $9.99 per month.
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Writeup and Code Submission

Writeup

You should submit a 2-3-page writeup describing what you did and your results in both Part 1 and Part 2.
It should follow the style of the previous writeups, but be a bit more in-depth due to the more open-ended
nature of this project and the lack of an autograder.

The project will be graded solely on the basis of the writeup. We will grade roughly equally across
the two parts, and within each part we will be evaluating:

• Scope (10): Was a sufficient amount of work done according to what’s laid out in the project specifica-
tion?

• Implementation, Results, Analysis (30 points): Is the implementation reasonable? Were appropriate
results reported? Was the analysis of the results correct, and were sound conclusions drawn based on
the evidence? Whether the results are positive or negative, try to motivate them by providing examples
and analysis. If things worked, what types of errors are reduced? If things didn’t work, why might that
be?

• Clarity/Writing (10 points): Was the report clearly written and structured to convey the ideas?

Code Submission

There is no autograder for this assignment. You will upload your code for Part 1 and Part 2 on Canvas. The
code upload is purely documentary – we will not attempt to run it. Do not upload any data, model
outputs, or model checkpoints. YOUR FINAL UPLOAD SHOULD BE LESS THAN 500 KB.
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