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Abstract

We investigate whether recurrent neural net-
works (RNNs, LSTMs) suffice to learn and
represent non-local, context-dependent syntac-
tic structures (paper reproduction of Linzen
et al. (2016)). In addition, (1) we take inspira-
tion from Gulordava et al. (2018) and evaluate
whether LSTMs are able to provide accurate
predictions in the absence of collocational in-
formation; (2) we probe models trained under
direct supervision for other syntactic structures
such as POS tags. We choose to reproduce
tasks based on the same natural language struc-
ture, subject-verb agreement.

1 Introduction

Recurrent Neural Networks (RNNs) excel at learn-
ing statistical probabilities in sequences and rela-
tions between adjacent words. Even naive feed-
forward networks trained on bag-of-word features
can achieve significant accuracy rates on some
problems. However, many natural language tasks
require learning non-local and/or hierarchical struc-
tures such as dependency trees and part-of-speech
tags. In this project, we investigate whether RNNs
can successfully learn these tasks, even though they
do not explicitly encode syntactical structures.

We pursue a paper replication of Linzen et al.
(2016). We re-implement all model, training, and
evaluation code in PyTorch, loosely based on a Ten-
sorflow implementation provided by Linzen et al.1

We show that we were able to reproduce most re-
sults achieved by Linzen et al. (due to limited
compute resources, we did not reproduce the sub-
section that evaluates the Google LM (Józefowicz
et al., 2016)).

Extensions to paper reproduction We probe
trained models to determine whether they learned
language structure or only relied on collocational
information (e.g. frequently co-occurring nouns
and noun phrases). We aim to understand if LSTMs
can still learn sentence structure in the absence of
co-occurring nouns.

In addition, we probe models trained under di-
rect supervision (for subject-verb agreement) to

1Linzen et al. code is available here: https://
github.com/TalLinzen/rnn agreement

determine whether they implicitly learned to repre-
sent other natural language structure.

2 Background

2.1 Subject verb agreement
A grammatically correct English sentence must
have its subject(s) and verb(s) agreeing in number.
That is, if a subject is singular or plural, then its
verb must be singular or plural respectively. The
model needs to understand the syntactic structure
of the sentence to be able to predict the verb. This
cannot be done utilizing models that only utilize
a fixed-size or only the neighborhood of the verb
because of several different reasons:

Varying distance: A fixed-size model such as
an n-gram model cannot be used to capture the
syntactic structure of a sentence. This is because
the distance between the noun and the verb is not
in a fixed window e.g.

The book on the shelf is about dogs.
The book on the shelf in the library is
about dogs.

Simple RNNs can theoretically capture the syn-
tactic structure over sentences of varying length,
however, due to vanishing gradients (Hochreiter,
1998), they may not yield consistent results over
longer sentences. LSTMs (with memory gates)
should perform better for this task.

Intervening nouns: The noun and verb pair may
not immediately follow each other. As the complex-
ity of a sentence increases, there is a large prob-
ability of intervening nouns in between the noun
and its corresponding verb. Intervening nouns are
nouns that are not associated with the verb in the
sentence. These intervening nouns may or may not
have the same number as the subject noun. In the
case that the nouns disagree with the subject noun,
they are called agreement attractors, as they steal
the noun-verb agreement from the original subject
noun. Looking at the local context may lead to a
wrong prediction. As an example:

The books over there are about dogs.
The books on the shelves are about dogs.
The books on the shelf are about dogs.



In the first example, there is no intervening noun.
In the second example, the intervening noun is of
the same number as the subject noun, but in the
third example, the intervening noun is an agree-
ment attractor.

Relative clauses: The intervening nouns can be
further complicated if they form a relative clause
within the sentence. Relative clauses may seem
like the correct attractor of the verb agreement but
are not. As an example:

The books of the student ...
The books that the student ...

In the first example, there is a prepositional phrase
(PP) that begins with the word “of”. This does not
change the active subject of the sentence. However,
in the second example, there is a relative clause
(RC) that begins with the word “that”. This does
change the active subject of the sentence within the
relative clause context.

2.2 Related work

This work is a direct paper replication of Linzen
et al. (2016), whose contents are explained through-
out this paper. Linzel et al. were the first to ana-
lyze whether RNNs, specifically LSTMs, had the
capacity to implicitly learn and represent natural
language structure.

A followup work by Gulordava et al. (2018)
showed that the supervised learning models by
Linzen et al. memorized some word co-frequencies.
Gulordava et al. generated sentences with random
nouns in multiple languages for training and eval-
uation. Results of this work strongly support the
results of Linzen et al.: LSTMs can learn syntactic
structure with direct supervision.

Another followup work by Kuncoro et al. (2018)
added explicit structure in the form of constituency
parse trees to the input data of the language model-
ing task. This model gives much higher accuracy
when probing for subject-verb agreement.

3 Methods

3.1 Data

We use the dataset created by Linzen et al. The
corpus of example sentences and POS labels was
created from Wikipedia articles. Each example con-
tains sentence, target noun/verb, and additional in-
formation to enable a variety of experiments. In the
data, words with low frequency were replaced with

their corresponding part-of-speech (POS) tags2 to
prevent the models from learning outlier patterns.

In each task, we only use sentences as model
inputs. Our dataset split ratios is adopted from
Linzen et al. for consistency. The data consists
of 1,577,211 examples of which 1,419,490 (90%)
examples are reserved for extensive testing. The
remaining data is split into 141,949 (9%) examples
for training and 15,772 (1%) examples for valida-
tion.

3.2 Supervised learning
We reproduce the Number Prediction task. In this
task, the model is trained to predict the number
(singular or plural) of a present-tense verb based
on the preceding words. The sentence below is
an example of a training example with the label
”singular”.

The book on the shelf

To understand whether LSTMs can capture the
syntactic context of a sentence, we consider varia-
tions of the Number Prediction task and establish
baselines similar to Linzen et al. (2016) We group
our baselines into two categories. These aim to
understand if the model is using syntactic context
primarily or secondarily to the subject noun and
the verb itself.

3.2.1 Noun-only baselines
All sentence context information is withheld except
for the subject noun, the verb, and all the interven-
ing nouns. As other parts of speech are unavailable
in the context, the model will not learn any context.
Another variation of this baseline is one where only
the POS tags are available for the nouns instead of
the actual nouns.

3.2.2 Grammaticality baselines
Sentence context is available, but the subject noun
and the verb themselves may not agree grammati-
cally. In one variation, the verb seen during training
is always singular and as a result, may or may not
agree with the subject noun. In another variation,
the verb seen during training always has the op-
posite number to the subject noun and, as a result,
always disagrees with the subject noun.

3.3 Self-supervised learning
We reproduce the Language Modeling (LM) task.
This type of self-supervised learning is used to train

2Penn Treebank tags



many large-scale models today due to the sheer
amount of training examples that could be gener-
ated (Vaswani et al. (2017), Devlin et al. (2018)).
In this task, a model is trained to predict the next
word given previous words, with no syntactic an-
notations. In the absence of structured data, LSTM
models trained on the LM task should learn to rep-
resent meaningful structure in the latent space.

After training our model on the LM objective,
we probe whether it has learned the necessary syn-
tax for subject-verb agreement. This is done by
evaluating the following condition on sentences in
the test dataset.

Pr[verb that agrees with subject | prev words]

> Pr[verb that disagrees with subject | prev words]

Due to limited compute resources, we were only
able to train and evaluate the LM model on one-
fourth of the provided dataset.

3.4 Extension: Number Prediction with
randomized subjects

We expand on the paper reproduction by evaluating
our models on sentences with randomly generated
subjects. This is inspired by the work of Gulor-
dava et al. (2018) which shows that LSTMs can
still learn sentence structure in the absence of co-
occurring nouns.

We make modifications to the dataset provided
by Linzen et al. First, we discover the sets of all sin-
gular and plural nouns in the provided dataset, then
we replace every subject with a randomly sampled
noun. This is slightly different than the methodol-
ogy used by Gulordava et al., which replaces all
nouns in the sentence with randomly sampled ones.
We believe that we can achieve similar results by
replacing only the sentence subjects.

This modified dataset is used to probe a model
trained with the original dataset on the Number
Prediction task. In addition, we train and evaluate
another model using the modified dataset with the
goal of reproducing the results given by Gulordava
et al.

3.5 Extension: Probing Verb Number
Prediction for POS

We expand on the paper reproduction by probing
models trained on the Verb Number Prediction task
for POS information. Our goal is to show that mod-
els trained on subject-verb agreement with direct
supervision can implicitly capture POS informa-
tion.

Our probe model is a simple single layer feed-
forward network that takes the output of the last
hidden layer from our Number Prediction LSTM
model and predicts POS tags (45 classes total from
the Penn Treebank).

3.6 Model

The model architecture for the Number Prediction
task was adapted from the model created by Linzen
et al. The words are encoded as one-hot vectors
and then embedded using 50-dimensional word
embeddings, which are trained and not fixed. The
word embeddings outputs are passed through an
LSTM with 50 hidden units and the final state of the
LSTM is passed through a linear layer. The model
is trained using Binary Cross Entropy (BCE) loss
and optimized using Adam. Additionally, an early
stopping mechanism is set in place to stop training
once validation loss starts increasing again.

All baselines in Section 3.2 and the Number
Prediction task are trained with the aforementioned
model architecture. The models were set to train for
10 epochs but usually early stopped before complet-
ing 10 epochs. When early stopping was removed,
no significant improvement was observed.

Our LM model is almost identical to the afore-
mentioned model architecture, only training with
Cross Entropy Loss instead of BCE. The architec-
ture of our probe model is discussed in Section
3.5.

We only evaluate models on tasks that they are
trained for. In our discussion of results, we shorten
”LSTM model trained on the task” to the ”
model”.

4 Results and Analysis

Overall, the accuracy and F1-score of the Number
Prediction task are promising, as seen in Table 1.
The LSTM model demonstrates a 98.81% accuracy
and a 98.14% F1-score. The model shows a 1.19%
error rate on predictions.

The noun-only baselines have a significantly
higher error rate at 5.00% for only nouns, and
5.16% for POS tags of the nouns. We will explore
this further in Section ??, but it suggests that syn-
tactic information from the context of the sentence
helps the LSTM make better predictions.

When comparing with the grammaticality base-
lines, it is not immediately clear whether the num-
ber prediction model is overly dependent on using
the subject noun and the verb itself to make its



Model Accuracy F1-score
Number prediction 98.81 98.14
Only Nouns baseline 95.00 92.10
POS Nouns baseline 94.84 91.95
Always Singular Verb baseline 98.79 98.11
Reversed Grammaticality baseline 95.93 95.93

Table 1: Accuracy and F1-score results for all the baselines models and the number prediction model.

predictions. For the Always Singular Verb model,
there is no significantly higher error rate at only
1.21%. However, the Reversed Grammaticality
model has a higher error rate at 4.07%. In section
4.3, we will investigate where the error in these
baselines lies.

Figure 1: Verb number prediction error rate depending
on the number of agreement attractors and the type of
the model

4.1 Comparison to Simple Recurrent Neural
Networks

To truly understand how much of the model’s suc-
cess should be attributed to the LSTM cell, we first
repeat the Number Prediction task using a Simple
Recurrent Neural Network (RNN), specifically an
Elman network (Elman, 1990). The performance
of the LSTM network was consistently better than
the Elman network by a factor of about 1.5, as seen
in Figure 1. However, this doesn’t necessarily im-
ply that the Elman network is unable to capture the
same syntactic structures captured by the LSTM
network. One possibility is the limitation of Elman
networks to learn structures over long sentences
due to vanishing gradients (Hochreiter, 1998). As
the number of agreement attractors increase in a
sentence, the length of the sentence is also likely to
increase. This could explain the Elman network’s
worse performance on these examples. So, for the

remainder of the results, we only consider the per-
formance of LSTMs over Elman networks.

4.2 Distance
We first look at whether the model consistently
makes correct predictions as the word distance be-
tween the subject noun and the verb increases. Sim-
ilar to Linzen et al., we do not consider examples
where there are intervening nouns (whether of the
same type or not). This is to avoid introducing an
extra variable. The model performs well even at
larger distances. As seen in Figure 2, the model has
error rates less than 1% when the subject noun and
verb are adjacent and there is not a very large re-
duction in performance even for distances of 12-14.
It is important to consider that most sentences in
the English language have smaller distances, which
is why the overall error rate is not very high.

Figure 2: Verb number prediction error rate depending
on the distance between the noun and the verb excluding
examples containing intervening nouns

4.3 Agreement attractors
We next assess whether intervening nouns between
the subject noun and the verb played a role in the
model’s error rates. We check how the number
of intervening nouns affects the error rate in the
number prediction model compared to the various
baseline models, and also if there are any signifi-
cant differences between singular and plural nouns.

To analyze whether the number of intervening
nouns between the subject noun and the verb, we



(a) (b)

Figure 3: Verb number prediction error rate depending on the number of homogeneous agreement attractors between
the subject noun and the verb. Figure 3a shows verb number prediction error rate as compared to noun-only baselines
(Section 3.2.1). Figure 3b shows verb number prediction error rate as compared to grammaticality baselines (Section
3.2.2).

eliminate some variables similar to Linzen et al.
We only use examples with all intervening nouns
of the opposite number to the subject noun. These
opposite number intervening nouns are labeled as
agreement attractors as mentioned in Section 2.1.
As all the intervening nouns are of the same num-
ber, this is a homogeneous intervention.

Figure 3a shows the comparison between the
Number Prediction model and the noun-only base-
line models as the number of agreement attrac-
tors increase between the subject noun and the
verb. While the Number Prediction model’s er-
ror rate stays below the majority label even with 4
homogeneous agreement attractors, the noun-only
baseline models struggle even with a single agree-
ment attractor. With 4 agreement attractors, the
error rate for the Only Nouns model is 88.39% and
for the POS Nouns model is 74.00%. The POS
Nouns model performs slightly better, potentially
due to seeing a lesser number of distinct tokens, but
both baseline models perform much worse than the
Number Prediction model (error rate of 23.74%).
This demonstrates that syntactic information is nec-
essary for the model to perform well, which is
unavailable in the noun-only baselines.

Figure 3b shows the comparison between the
Number Prediction model and the grammaticality
baseline models. The error rate remains below ma-
jority up to 4 agreement attractors and quite close
to each other for the Number Prediction model
and both the grammaticality baseline models. This
probably means that the model is using the syntac-

tic context a lot more than the subject noun and
the verb themselves, especially in examples where
there is a lesser number of agreement attractors.
However, looking at overall accuracy results, the
Reversed Grammaticality model performed slightly
worse than the Singular Verb Always model and
the Number Prediction model, likely because of the
slightly higher error rates overall, and potentially
because it performed worse at larger number of
agreement attractors.

Figure 4 shows that the error rate in predicting
the verb number is not more prevalent in one num-
ber than the other. Both singular and plural nouns
have similar error rates regardless of the number of
the agreement attractors between the subject noun
and the verb. This means that the Number Predic-
tion model is not biased towards a single type of
noun or verb. The errors from the model are split
across both types of nouns and verbs.

Figure 4: Verb number prediction error rate depending
on the number of agreement attractors and the type of
the subject noun



4.4 Relative clauses

Relative clauses contain intervening nouns and can
typically be challenging for a model because the
intervening noun is also often accompanied by a
verb that agrees with that intervening noun. If this
intervening noun is also an agreement attractor, the
model may be misguided by the intervening nouns
and verbs. When the error rate of the model was
considered on examples with a single agreement
attractor where a relative clause was present or
not, we observed that the error rate on examples
without a relative clause was 4.40%, while the error
rate on examples containing a relative clause was
much higher at 16.16%. While the model struggles
with relative clauses, it does capture the syntactic
structure involving relative clauses as described in
the next section.

4.4.1 LSTM Cell Activations
To understand the behavior of the model and what
syntactic structure it is learning, we analyze the
model’s activation on a pair of constructed sen-
tences similar to Linzen et al. The following are
the constructed sentences utilized:

The houses of the man from the office
across the street ...
The houses that the man from the office
across the street ...

The first sentence has a prepositional phrase as indi-
cated by the word “of”, keeping the active subject
of the sentence at “houses”. However, the second
sentence has a relative clause indicated by the word
“that”, changing the active subject of the sentence
to “man”.

As observed in Figure 5, while the activations
for both sentence begin with the probability that
the verb is singular is close to 1, the activations
diverge after the critical word “of/that”. For the
sentence with the prepositional phrase, the proba-
bility that the verb is singular drops close to 0 after
the prepositional phrase starts. The model ignores
the agreement attractor and continues to keep the
active noun as “houses”. However, for the sentence
with the relative clause, the probability that the
verb is singular remains close to 1 after the relative
clause starts. The model sees the noun “man” after
the relative clause starts and changes the focus of
the active noun to “man”.

The LSTM cell portrayed in Figure 5 is not nec-
essarily how every LSTM cell in the model may

have learned syntactic structure. The cell picked
for demonstration purposes learned the structure
very well, but many cells especially struggled with
the relative clause structure, alluding to the inherent
problem.

Figure 5: Word by word visualization of activation of a
particular LSTM cell in the Number Prediction model
for prepositional phrases and relative clauses.

4.5 Extension: Number Prediction on
randomized subjects

Model Accuracy F1-score
Baseline 98.81 98.14
Train on original
Eval on random subj.

83.3 73.0

Train + Eval
on random subj.

94.0 90.6

Train on random subj.
Eval on original

95.1 92.6

Table 2: Accuracy and F1 score results for the verb
number prediction task, evaluated on sentences with ran-
domly sampled subjects. Baseline refers to our model
trained and evaluated on the unmodified dataset.

For Number Prediction on randomized subjects,
we evaluate our models on a modified dataset (as
described in Section 3.4) and summarize our results
in Table 2.

Unsurprisingly, we observe that our baseline
model (trained with the unmodified dataset) per-
forms poorly when evaluated on the modified
dataset. We measured an F1-score of 73%, which
lies around than the majority label proportion of
68% (Table 2). When we analyze error rates on
sentences with varying agreement attractor counts,
we observe that our baseline model does acceptably
when zero attractors are present, with an error rate



Figure 6: Verb number prediction error rate depending
on the number of agreement attractors. Baseline refers
to our model trained and evaluated on the unmodified
dataset.

that stays under the majority label (Figure 6). How-
ever, when evaluated on sentences with just one
agreement attractor, the baseline model performs
similarly to random guessing.

The poor performance of the baseline can be at-
tributed to the model learning to memorize specific
co-occurring words when training with the unmod-
ified dataset. Co-location and context matters for
natural language tasks, and learning these feature
weights is expected and effective for the number
prediction task.

Our model that is trained on the modified dataset
scored relatively well. We measured an F1-score
of 90.6%, which is slightly lower than the baseline.
This model did relatively well on sentences with
higher attractor counts, and we observe that error
rates increase over agreement attractor counts at a
rate similar to that of the baseline (Figure 6). We
also evaluate this model on the unmodified dataset
to ensure that it did not learn any co-locational
information, and we find that the model performs
similarly on both datasets (Table 2, Figure 6).

The overall accuracy and F1-score achieved by
this model appears similar to that of the nouns-only
baselines. We observe that this model performs
slightly worse in the case of zero attractors, but
does not experience the same sharp increase in
error rate with higher agreement attractor counts.
We believe that the difference between our model
trained on the modified dataset and the baseline can
be attributed to a lack of contextual information,
similar to that of the nouns-only baselines.

We conclude that LSTMs are capable of cap-
turing language structure in the absence of co-
locational information. This is similar to results

achieved by Kuncoro et al. (2018).

4.6 Extension: Probing Number Prediction
for POS tags

Accuracy F1-score
Overall 65.9 68.2
unweighted avg
across all classes

68.4 64.1

Table 3: Accuracy and F1 score results for POS probing
on a model trained on the number prediction task.

Predicted Gold % of mistakes
NN JJ 6.7
NN NNP 5
IN NN 2.3
JJ NN 2.3
DT NN 2.1

Table 4: Five most frequent mistakes in POS probing.
POS tags from Penn Tree Bank.

For probing the Number Prediction task, we take
a model trained on the Number Prediction task
and probe for POS tags as described in Section
3.5. We summarize overall accuracy and F1 scores
in Table 3 and report per POS tag results in the
Appendix (Table 5). We also list the five most
frequent mistakes made by our model in Table 4.

Our model was able to successfully predict POS
information, with overall and unweighted average
accuracy and F1 scores significantly higher than
can be achieved through random guessing (2.2%)
or predicting the most probable class (24.4%). This
suggests that our LSTM model trained on Verb
Number prediction captured POS information in
its latent representation, without explicit POS su-
pervision. This result is expected: a model that
performs well on subject-verb agreement must im-
plicitly learn some form of syntactic structure.

Most mistakes made in the probing task relate
to false positives and false negatives of NN, NNS,
VBZ, and VBN, as shown by Table 4. Subject-verb
agreement only strictly requires that our model
learns to differentiate between singular and plu-
ral, subjects and verbs, and potentially determiners.
Surprisingly, our model learned to differentiate be-
tween other POS tags relatively well (Table 5). This
suggests that models trained with explicit supervi-
sion for specific language structures can implicitly
learn other syntactic structures.



4.7 Language Model Probing

Figure 7: Probing subject-verb agreement error rate
depending on the number of agreement attractors.

For probing the LM task, we train a model on the
LM task and probe for subject-verb agreement as
described in Section 3.3. Probe evaluation results
are summarized in Figure 7.

We measure significantly high error rates on the
probing task, even for sentences with zero attrac-
tors between the subject and verb. Sentences with
one or more attractors achieve error rates much
higher than the majority (32%) and random guess-
ing (50%).

Our accuracy (60%) is much lower than that
reported by Linzen et al. (92%). We believe this
might be due to our change in methodology (as
mentioned in Section 3.3, we were only able to
train and evaluate on ~25% of the dataset due to
limited compute resources).

5 Conclusion

Overall, we were able to reproduce almost all re-
sults and analysis from the Linzen et al. paper. The
error rates for the majority of the models were sim-
ilar to those shown by Linzen et Al. We observed
that the LSTM models that were trained under di-
rect supervision did understand syntactic context
as demonstrated against the nouns-only baselines
and the grammaticality baselines. Additionally,
while our models struggled with sentences contain-
ing relative clauses, they did capture the syntactic
structure of the sentence as demonstrated by the
cell activations and POS probing results.

We also show that models trained under direct su-
pervision successfully learned subject-verb agree-
ment, even in the absence of some collocational
information (e.g. co-occurring nouns and phrases).

Finally, we show that a model trained for the
subject-verb agreement task implicitly captures

other sentence structure, specifically POS tags. Al-
though results from learning without any syntac-
tic information are disappointing, this implies that
models trained with one syntactic structure implic-
itly learn to represent others.
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POS tag Precision F1 score % of dataset
NN 56.64 65.24 0.216
IN 63.47 69.88 0.153
DT 76.03 80.23 0.132
NNS 67.76 74.38 0.074
JJ 37.36 33.00 0.062
NNP 61.78 50.74 0.048
VBZ 65.94 65.55 0.046
CC 79.07 84.39 0.033
RB 41.98 35.56 0.028
VBP 62.35 59.05 0.022
TO 60.06 66.76 0.015
VB 52.90 37.63 0.011
PRP 63.96 54.48 0.010
VBN 35.77 17.90 0.007
VBG 62.63 35.42 0.007
WDT 74.63 74.13 0.006
POS 90.37 84.23 0.004
PRP$ 47.74 27.61 0.003
WRB 72.02 77.03 0.003
MD 51.48 37.01 0.003
CD 43.30 12.61 0.003
WP 80.74 83.27 0.002
RBR 52.89 42.47 0.001

Table 5: Accuracy and F1 score results for POS probin-
gon a model trained on the number prediction task, by
POS tag.

Figure 8: All the Prepositional Phrase LSTM units and
the Relative Clause LSTM units


