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Abstract

Visualization is a powerful tool for hu-
mans to understand and interpret large
amounts of data. Attention mechanisms
in natural language models appear like a
prime target for visualization, but these
can be spurious or uninterpretable in many
models, such as recurrent neural networks.
This project explores the ability for quali-
tative and quantitative analysis of attention
in multimodal models, specifically Cai et
al.’s sarcasm classifier, to provide insight
into decisions and highlight weak spots in
the model’s performance.

1 Introduction

Interpretability is a constant struggle in natural
language processing (Jacovi and Goldberg, 2020),
where models are increasingly being trusted to
perform real-world tasks while simultaneously be-
coming more complicated and opaque. Using at-
tention weights (Bahdanau et al., 2016) as a stand-
in for feature importance is a tempting solution,
but faces a myriad of problems. For once, atten-
tion over latent features is meaningless to humans.
Additionally, in some models, attention over ob-
served inputs is misleading. For example, atten-
tion over timesteps in a recurrent neural networks
has shown to be a poor indicator of feature impor-
tance due to the manner in which RNNs opaquely
encode information from other timesteps (Jain and
Wallace, 2019). As an experiment, I visualized at-
tention from the trained seq2seq Geoquery (Zelle
and Mooney, 1996) model from Project 2. Figure
1 shows an example of a correctly parsed query
with expected attention in some places (”texas” to
texas) but not others (”largest” to largest or
”bordering” to next to). Nearly all of the ex-
amples I observed from this dataset showed sim-
ilar behavior. In models where the task is less

simple, relying on attention weights to interpret
model decisions would lead to spurious conclu-
sions. However, Jain and Wallace also concluded
that attention weights in feedforward neural net-
works were much more similar to feature impor-
tance metrics.

The rest of this paper is focused on analyz-
ing attention in the model from Multi-Modal Sar-
casm Detection in Twitter with Hierarchical Fu-
sion Model (Cai et al., 2019). The model predicts
sarcasm in Tweets that include image and text. At-
tention analysis in this model and those similar is
not only feasible (most of the layers are feedfor-
ward, rather than recurrent) but valuable, due to
the ubiquity of multimodal data across social me-
dia and other internet mediums and the nuance of
a task such as sarcasm classification.

The version of the model I used was a Pytorch
implementation from GitHub (D-Blue, 2020)
which I cloned and trained on my laptop using a
discrete GPU. I ensured the performance metrics
were on par with the original paper’s before mov-
ing forward.

A diagram of Cai et al.’s model is included
in figure 2. Three modalities are used: image,
text, and attribute. To extract the image features,
the image is split up using a 14-by-14 grid and
each of the 196 squares are fed into a pretrained
ResNet-50 V2 model (He et al., 2016). Five
single-word attributes are extracted from the im-
age using another ResNet model trained on an
image-captioning dataset. The Tweet text is fed
through a Bi-LSTM (Huang et al., 2015). In ad-
dition to the feature vectors, each modality com-
putes a guidance vector by arithmetic or attention-
weighted average over each element in the feature
vector. The guidance vector can be thought of as
a dimension-reduced version of the feature vector,
and all three are the same size.

This paper is centered around analyzing the at-
tention weights of the next steps: representational



Figure 1: Attention visualization of an example from Project 2.

Figure 2: Architecture of Cai et al.’s model.



fusion and modality fusion. Representational fu-
sion re-weights the feature vector of each modality
m by computing three attention weights over each
element in m, one computed from each modal-
ity n’s guidance vector. We now have nine αm,n

attention vectors that represent attention over m
computed using information encoded in n. The
three attentions over one m are arithmetically av-
eraged and then used to recompute the feature vec-
tor.
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whereXm is the feature vector being attended and
gn is the guidance vector for the source modality

Next, the three re-weighted vectors are com-
bined into one fused vector using modality fu-
sion. Attention across each modality (three
scalars) is computed. The three feature vectors
are transformed to equal lengths and the final fea-
ture vector is computed by taking the attention-
weighted average. This vector is then fed into a
fully connected layer that outputs a classification
decision.
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These twelve attention vectors together encode
a large amount of information and when used to-
gether may provide deep insights into the model’s
decisions. The next two sections will cover the
qualitative and quantitative analyses I conducted
using these attention weights.

2 Visualization and Quantitative
Analysis

We can visualize attention over each of the three
modalities, as seen in Figure 3. Again, we have to
remember to exercise a level of caution regarding
attention over the text tokens, as RNN attention is

not always directly representative of true impor-
tance. Because of the unique way that representa-
tional fusion works in this model, we can also split
attention into each am,n and view by each source
modality, as in Figure 4. We can compare and con-
trast attention from different modalities to draw in-
ference on the model’s decision-making process.
For example, in attention over the image, image-
and text-sourced attention tends to highlight words
within the image while attribute-sourced attention
highlights people and faces. Attribute-sourced at-
tention focuses on hashtags in the text. Text tends
to self-attend to semantically significant words
such as ”awesome”, ”great”, and ”excited”. One
common example of a sarcastic Tweet is a screen-
shot or wall of text accompanied by enthusiastic
punctuation and words. These tend to have at-
tributes such as ”screen” or ”picture”. Attention
over these attributes by the text guidance vector
suggests that perhaps the presence of enthusiasm
of text generates interest in the fact that the im-
age is a screenshot, as the combination of both is
usually a sarcastic Tweet.

We can also examine the attention over the fea-
ture vectors of each modality, as in Figure 5. We
can perhaps think of these values as a measure
of importance of each modality, and this claim
is tested in a later section. We can also generate
confusion matrices for examples with the highest
attention in each modality as in Figure 6. Com-
bined with empirical observations from visualiza-
tion, these suggest that the model relies on key
words or phrases in the text to identify sarcasm
(”really”, ”monday”, and ”memes” are such key-
words) and looks for clues otherwise in images
and attributes. Images and attributes often iden-
tify the presence of people in images which em-
pirically indicates a non-sarcastic example (exam-
ples with ”man” and ”posing” attributes are strong
indicators of this).

In the original paper, Cai et al. showcase sev-
eral hand-picked attention visualizations and sug-
gest that the model picks up on semantic ”incon-
sistencies” between two models, and includes a
picture of a dark day with ”amazing weather” in
the Tweet. The presence of the sarcastic screen-
shot archetype challenges this somewhat, as the
model is unable to determine the semantics of the
screenshot (it is able to determine the image is text,
but the ResNet that runs on the image is incapable
of determining what the words mean) and empir-



Figure 3: Attention visualization of an example from the Twitter dataset.

Figure 4: The same example with attention split by source modality.



Figure 5: Distribution of attention over final
modality vectors.

ically, even non-screenshot images included with
sarcastic Tweets are nuanced in ways that humans
understand in conjunction with the text (political
figures or items with cultural significance), but are
not picked up by the model through images or at-
tributes. These examples are still correctly identi-
fied as sarcastic through the evaluation of text fea-
tures, however.

2.1 Attention Permutation

Another experiment, inspired by Jain and Wallace,
was to randomly permute one type of represen-
tational or modality fusion attention and analyze
how it changed the model’s predictions. For im-
age, text, attribute, and modality attention, I de-
fine impact as |p − pa|, where p is the probabil-
ity output of the model and pa is the output af-
ter randomly permuting attention type a ∈ {img,
text, attr, modality}. Impact should be an approx-
imate measure of the importance of that feature
(the meaning of the modality attention is a little
harder to interpret). For every example in the test
dataset, I calculate the impact of 10 random per-
mutations (5 for modality attention), and the av-
erage is the impact for that example. Figure 7
shows the distribution of impact for each atten-
tion type. Unsurprisingly, text has a significantly
higher mean and is more variable than attribute
and image, and image has a slightly higher mean
than attribute. This looks similar to the distribu-
tion of modality attention (Fig. 5). A natural ques-
tion arises: is modality attention (the weight of
each modality in the classification) a good indi-
cator of modality importance at an example level?
Table 1 shows r values of a linear regression be-
tween modality fusion attention and permutation
impact. There is a moderate correlation for text,
but a weak correlation for image and attribute. An

additional consideration is that 10 random permu-
tations is a small number, particularly for images
(196! ≈ 5e+365 possible permutations), and in-
creasing this number may reduce variability and
increase correlations (I limited myself to 10 due to
time and computational constraints).

Another interesting similarity to modality fu-
sion attention is that the confusion matrix of the
top 100 impacted examples for each modality
(Figure 8) looks very similar to the most attended
examples (Figure 6), where image and attribute
were largely true negatives while text was true
positives. Impact also allows us to view the con-
fusion matrix for modality fusion attention itself,
which is mostly true positives. One possible ex-
planation for this is that the model has a somewhat
strict region for classifying positives, which means
that noise tends to bring down the classification
probability for more positive classifications.

Modality r

text 0.588
img 0.094
attr 0.286

Table 1: Correlation between modality attention
and permutation impact

3 Future Work

Attention visualization is particularly powerful in
Cai et al.’s model due to the presence of different
modalities that interact through fusion. A multi-
modal fusion model including video or audio (Ku-
mar and Vepa, 2020) could also provide interest-
ing or insightful visualizations.

Additionally, such visualization could be used
as a transparency tool for user-facing models, or as
an exploration tool for academics and researchers.
Creating an interactive, web-based visualization
tool for a model could be an intermediate step to-
wards interpretability, until we can coerce mod-
els to provide succinct explanations for their deci-
sions.

4 Conclusion

Through a combination of example-level observa-
tion and quantitative aggregated analysis, attention
over a multimodal model can provide a wide range
of insights, although it is difficult to prove em-
pirical hypotheses without deeper probing of the



Figure 6: Confusion matrices for highest attended examples for each modality.

Figure 7: Distribution over examples of impact of
attention permutation for each type of attention.

model. Additionally, attention visualization is an
effective tool for non-technical personnel or end-
users to understand how models make decisions,
and their ability to do so is critical to create fair
and transparent NLP-driven applications.
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Figure 8: Confusion matrices for most impacted examples.


