CS388: Natural Language Processing
Lecture 14: Interpretability

Greg Durrett
Announcements

- FPs back, Project 2 back soon
- Project 3 due in a week
- Greg’s office hours 5pm-6pm today
- No class next Thursday
Recap: Instruction Tuning

- T0: tries to deliver on the goal of T5 and do many tasks with one model

- **Crowdsourced prompts**: instructions for how to do the tasks

Sanh et al. (2021)
Recap: RLHF

- Apply this approach to optimizing outputs from large language models
- Step 3 (not shown): do RL with this policy
Today

- We’ve seen a lot of results from black box neural networks. Why can’t we just look at \textit{why} they make their predictions?

- Interpreting neural networks: what does this mean and why should we care?

- Local explanations: erasure techniques

- Gradient-based methods

- Evaluating explanations
Interpreting Neural Networks
Interpreting Neural Networks

- This is a BERT-based QA model. How do we figure out why it picked Stewart over Devin Funchess?

Question: who caught a 16-yard pass on this drive?

Answer: devin funchess

Start Distribution

- *Green: Heatmap of posterior probabilities over the start of the answer span*

there would be no more scoring in the third quarter, but early in the fourth, the broncos drove to the panthers 41-yard line. on the next play, easily knocked the ball out of manning’s hand as he was winding up for a pass, and then recovered it for carolina on the 50-yard line. a 16-yard reception by devin funchess and a 12-yard run by stewart then set up gano’s 39-yard field goal, cutting the panthers deficit to one score at 16â€”10. the next three drives of the game would end in punts.
Interpreting Neural Networks

The movie was not bad -> **negative** (gold: **positive**)

<table>
<thead>
<tr>
<th>Sentence</th>
<th>DAN</th>
<th>Ground Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>this movie was not good</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>this movie was good</td>
<td>positive</td>
<td>positive</td>
</tr>
<tr>
<td>this movie was bad</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>the movie was not bad</td>
<td>negative</td>
<td>positive</td>
</tr>
</tbody>
</table>

- Left side highlights: predictions model makes on individual words
- Tells us how these words combine
- What does this experiment tell us?

Iyyer et al. (2015)
Why explanations?

‣ **Trust:** if we see that models are behaving in human-like ways and making human-like mistakes, we might be more likely to trust them and deploy them

‣ **Causality:** if our classifier predicts class y because of input feature x, does that tell us that x causes y? Not necessarily, but it might be helpful to know

‣ **Informativeness:** more information may be useful (e.g., predicting a disease diagnosis isn’t that useful without knowing more about the patient’s situation)

‣ **Fairness:** ensure that predictions are non-discriminatory

Lipton (2016)
- Some models are naturally **transparent**: we can understand why they do what they do (e.g., a decision tree with <10 nodes)

- Explanations of more complex models
 - **Local explanations**: highlight what led to this classification decision. (Counterfactual: if these features were different, the model would’ve predicted a different class) — focus of this lecture
 - **Text explanations**: describe the model’s behavior in language
 - **Model probing**: auxiliary tasks, challenge sets, adversarial examples to understand more about how our model works

Lipton (2016); Belinkov and Glass (2018)
Local Explanations

(which parts of the input were responsible for the model’s prediction on this particular data point?)
Similar to a DAN model, but (1) extra BiLSTM layer; (2) attention layer instead of just a sum

Jain and Wallace (2019)
Attention Analysis

- Attention places most mass on *good* — did the model ignore *not*?
- What if we removed *not* from the input?

Jain and Wallace (2019)
Attention Analysis

after 15 minutes watching the movie I was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth it finally watched the movie what a waste of time maybe I am not a 5 years old kid anymore

original α

$$f(x|\alpha, \theta) = 0.01$$

adversarial $\tilde{\alpha}$

$$f(x|\tilde{\alpha}, \theta) = 0.01$$

- They show it is possible to modify attention while preserving the prediction probabilities
- Does this convince you that explanation is not helpful?

Jain and Wallace (2019)
Local Explanations

- An explanation could help us answer counterfactual questions: if the input were x' instead of x, what would the output be?

\[
\text{Model} \\
\text{that movie was not great, in fact it was terrible!} - \\
\text{that movie was not _____, in fact it was terrible!} - \\
\text{that movie was _____ great, in fact it was _____!} +
\]

- Attention can’t necessarily help us answer this!
Erasure Method

- Delete each word one by one and see how prediction prob changes

<table>
<thead>
<tr>
<th>Original Sentence</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>that movie was not great, in fact it was terrible!</td>
<td>prob = 0.97</td>
</tr>
<tr>
<td>___ movie was not great, in fact it was terrible!</td>
<td>prob = 0.97</td>
</tr>
<tr>
<td>that ____ was not great, in fact it was terrible!</td>
<td>prob = 0.98</td>
</tr>
<tr>
<td>that movie ____ not great, in fact it was terrible!</td>
<td>prob = 0.97</td>
</tr>
<tr>
<td>that movie was ___ great, in fact it was terrible!</td>
<td>prob = 0.8</td>
</tr>
<tr>
<td>that movie was not ____ , in fact it was terrible!</td>
<td>prob = 0.99</td>
</tr>
</tbody>
</table>
Erasure Method

- Output: highlights of the input based on how strongly each word affects the output

 that movie was not great, in fact it was terrible!

- *not* contributed to predicting the negative class (removing it made it less negative), *great* contributed to predicting the positive class (removing it made it more negative)

- Will this work well?
 - Inputs are now unnatural, model may behave in “weird” ways
 - Saturation: if there are two features that each contribute to negative predictions, removing each one individually may not not do much
LIME

• Locally-interpretable, model-agnostic explanations (LIME)

• Similar to erasure method, but we’re going to delete collections of things at once

 ▪ Can lead to more realistic input (although people often just delete words with it)

 ▪ More scalable to complex settings
LIME

- Break input into components (for text: could use words, phrases, sentences, ...)
- Check predictions on subsets of those
- Now we have model predictions on perturbed examples

This is what the model is doing on perturbed examples of the input.

Now we train a classifier to predict the model’s behavior based on what subset of the input it sees.

The weights of that classifier tell us which parts of the input are important.
LIME

- This secondary classifier’s **weights** now give us **highlights** on the input

The movie is mediocre, maybe even bad.

The movie is *mediocre*, maybe even bad.

Negative 99.8%

Negative 98.0%

Negative 98.7%

Positive 63.4%

Positive 74.5%

Negative 97.9%

Wallace, Gardner, Singh
Interpretability Tutorial at EMNLP 2020
Problems with LIME

- Lots of moving parts here: what perturbations to use? what model to train? etc.
- Expensive to call the model all these times
- Linear assumption about interactions may not be reliable
Gradient-based Methods
Problems with LIME

- Problem: fully removing pieces of the input may cause it to be very unnatural

 LIME/erasure zeroes out certain features

 data manifold (points we observe in practice)

- Alternative approach: look at what this perturbation does locally right around the data point using gradients
Gradient-based Methods

score = weights * features
(or an NN, or whatever)

Learning a model
Compute derivative of score with respect to weights: how can changing weights improve score of correct class?

Gradient-based Explanations
Compute derivative of score with respect to features: how can changing features improve score of correct class?
Gradient-based Methods

- Originally used for images

\[S_c = \text{score of class } c \]
\[I_0 = \text{current image} \]

\[w = \frac{\partial S_c}{\partial I} \bigg|_{I_0} \]

- Higher gradient magnitude = small change in pixels leads to large change in prediction

Simonyan et al. (2013)
Gradient-based Methods

Simonyan et al. (2013)
Suppose you have prediction = A OR B for features A and B. Changing either feature doesn’t change the prediction, but changing both would. Gradient-based method says neither is important.

- Integrated gradients: compute gradients along a path from the origin to the current data point, aggregate these to learn feature importance.

- Intermediate points can reveal new info about features.

Sundararajan et al. (2017)
Evaluating Explanations
Faithfulness vs. Plausibility

› Suppose our model is a bag-of-words model with the following:

 \[
 \begin{align*}
 \text{the} &= -1, \quad \text{movie} = -1, \quad \text{good} = +3, \quad \text{bad} = 0 \\
 \text{the movie was good} &\quad \text{prediction score}=+1 \\
 \text{the movie was bad} &\quad \text{prediction score}=-2
 \end{align*}
 \]

› Suppose explanation returned by LIME is:

 \[
 \begin{align*}
 \text{the movie was good} \\
 \text{the movie was bad}
 \end{align*}
 \]

› Is this a “correct" explanation?
Faithfulness vs. Plausibility

- **Plausible** explanation: matches what a human would do

 the movie was **good** the movie was **bad**

 - Maybe useful to explain a task to a human, but it’s not what the model is really doing!

- **Faithful** explanation: actually reflects the behavior of the model

 the movie was **good** the movie was **bad**

 - We usually prefer faithful explanations; non-faithful explanations are actually deceiving us about what our models are doing!

- Rudin: *Stop Explaining Black Box Models for High-Stakes Decisions and Use Interpretable Models Instead*
Evaluating Explanations

- Nguyen (2018): delete words from the input and see how quickly the model flips its prediction?
 - Downside: not a “real” use case

- Hase and Bansal (2020): counterfactual simulatability: user should be able to predict what the model would do in another situation
 - Hard to evaluate
Evaluating Explanations

- Human is trying to label the sentiment. The AI provides its prediction to try to help. Does the human-AI team beat human/AI on their own?
- AI provides both an explanation for its prediction (blue) and also a possible counterargument (red)
- Do these explanations help the human? Slightly, but AI is still better
- Few positive results on “human-AI teaming” with explanations Bansal et al. (2020)
What to Expect from Explanations?

‣ What do we really want from explanations?
 ‣ Explanations should describe model behavior with respect to counterfactuals (Miller, 2019; Jacovi and Goldberg, 2021)

 The movie is not that bad.
 The movie is not ___ ___.

‣ What about realistic counterfactuals? Since dropping tokens isn’t always meaningful

 The movie is not actually bad.

‣ We are going to evaluate explanations based on whether they can tell us useful things about model behavior
A Multi-hop QA Example

Ye et al. (2021)

We formulate a hypothesis about the model’s behavior, and test it using counterfactuals

Base Example
Are Super High Me and All in This Tea both documentaries?
Super High Me is a 2008 documentary film about smoking.
All in This Tea is a 2007 documentary film.

Token-Level Explanation
<s> Are Super High Me and All in This Tea both documentaries? </s>
</s> Super High Me is a 2008 documentary film about smoking. All in This Tea is a 2007 documentary film. </s>

Expected Behavior
The hypothesis is true.

Hypothesis
The QA model is looking at the two documentary tokens

Realistic Counterfactuals
Super High Me is a 2008 romance film about smoking.
All in This Tea is a 2007 documentary film.

Expected Behavior
Super High Me is a 2008 romance film about smoking.
All in This Tea is a 2007 romance film.

Actual Behavior
The hypothesis is not true.
Model always predict YES.
Other work has done similar studies with humans interpreting model explanations to make predictions:

- People misinterpret these maps and conflate them with other factors. We actually need to *modify* what is shown to users to get them to have the right interpretation.
Takeaways

‣ Lots of ongoing research:
 ‣ How do we interpret explanations?
 ‣ How do *users* interpret our explanations?
 ‣ How should *automated systems* make use of explanations?

‣ Emerging consensus: there is no one-size-fits-all solution. There are many formats of explanation that all have their uses — choice may be application specific

‣ This research has taken a bit of a back seat during the current era of LLMs.
Packages

› AllenNLP Interpret: https://allennlp.org/interpret

› Captum (Facebook): https://captum.ai/

› Various pros and cons to the different frameworks
Takeaways

‣ Many other ways to do explanation:
 ▶ Probing tasks: do vectors capture information about part-of-speech tags?
 ▶ Diagnostic test sets ("unit tests" for models)
 ▶ Building models that are explicitly interpretable (decision trees)