Recall: Binary Classification

Logistic regression: \[P(y = 1|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)} \]

Decision rule: \[P(y = 1|x) \geq 0.5 \Leftrightarrow w^T x \geq 0 \]

Gradient: differentiate the log likelihood: \[x(y - P(y = 1|x)) \]

- This is the gradient of a single example. Can then apply stochastic gradient (or related optimization methods like Adagrad, etc.)
- ML pipeline: input -> feature representation, train model on labeled data (with stochastic gradient methods), then test on new data

This Lecture

- Evaluation in NLP (part 1)
- Multiclass fundamentals
- Feature extraction
- Multiclass logistic regression
- Start NNs (if time)
Evaluation in NLP

- For sentiment analysis: our evaluation was *accuracy*
- For more imbalanced classification tasks: accuracy doesn’t make sense

Suppose we are classifying tokens as people’s names or not:

The meeting was held between Barack Obama and Angela Merkel

The two heads of state discussed matters of the economy and the...

90+% of tokens will not be people’s names depending on the text genre

Precision vs. Recall

- **Precision**: number of true positive predictions divided by number of positive predictions

- **Recall**: number of true positive predictions divided by total true positives

Predictions in blue, ground truth in gold

The meeting was held between Barack Obama and Angela Merkel

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/3 = 0.66</td>
<td>2/4 = 0.5</td>
</tr>
</tbody>
</table>

F1 or F-measure: harmonic mean of these two = 0.57

Building Better Systems

System A: precision = 0.5, recall = 0.6, F1 = 0.55
System B: precision = 0.8, recall = 0.4, F1 = 0.53

Which is better?

System A: precision = 0.5, recall = 0.6, F1 = 0.55
System B: precision = 0.51, recall = 0.61, F1 = 0.56

Which is better?
Significance Tests

- Paired bootstrap: Suppose you have systems A and B and test set T. Hypothesis: \(perf(A, T) > perf(B, T) \)

  ```
  stat = 0
  for i in 0 to K  
      T' ~ sample from T with replacement to create test set of the same size  
  if perf(A, T') < perf(B, T')  
      stat += 1
  return pvalue = stat/K
  ```

- Think about the size of your test set. If 100 examples, a 1% difference is 1 example. Is that really meaningful? This can check that!

Macro F1

- Suppose you have a multiclass classification problem with 10 classes

- Which system is better?

 Accuracy = 0.7, always predicts most frequent class
 Accuracy = 0.68, makes some correct predictions from every class

- **Macro-averaged F1 (Macro F1):** compute F1 for each class (prec/rec of that class’s labels), average these F1s

Multiclass Fundamentals

Text Classification

- A Cancer Conundrum: Too Many Drug Trials, Too Few Patients
 Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

 By DINA KOLATA

- Yankees and Mets Are on Opposite Tracks This Subway Series
 As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play spoiler.

 By PULP BONNY

- Health
- Sports
~20 classes
Image Classification

- Dog
- Car

- Thousands of classes (ImageNet)

Entailment

- Three-class task over sentence pairs
 - A soccer game with multiple males playing. ENTAILS Some men are playing a sport.
 - A black race car starts up in front of a crowd of people. CONTRADICTS A man is driving down a lonely road
 - A smiling costumed woman is holding an umbrella. NEUTRAL A happy woman in a fairy costume holds an umbrella.

Bowman et al. (2015)

Entity Linking

Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified Armstrong from his seven consecutive Tour de France wins from 1999–2005.

- Lance Edward Armstrong is an American former professional road cyclist
- Armstrong County is a county in Pennsylvania...

- 4,500,000 classes (all articles in Wikipedia)

Binary Classification

- Binary classification: one weight vector defines positive and negative classes
Can we just use binary classifiers here?

- One-vs-all: train k classifiers, one to distinguish each class from all the rest
- How do we reconcile multiple positive predictions? Highest score?

Not all classes may even be separable using this approach

- Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others (with these features)

Binary classification: one weight vector defines both classes

- Multiclass classification: different weights and/or features per class
Multiclass Classification

- Formally: instead of two labels, we have an output space \(\mathcal{Y} \) containing a number of possible classes
- Same machinery that we’ll use later for exponentially large output spaces, including sequences and trees
- One weight vector per class: \(\arg\max_{y \in \mathcal{Y}} w_y^T f(x) \)
- Can also view it as a feature vector per class: \(\arg\max_{y \in \mathcal{Y}} w_y^T f(x, y) \)
- Multiple feature vectors, one weight vector features depend on choice of label now! note: this isn’t the gold label

Different Weights vs. Different Features

- Different weights: \(\arg\max_{y \in \mathcal{Y}} w_y^T f(x) \)
- Generalizes to neural networks: \(f(x) \) is the first \(n-1 \) layers of the network, then you apply a final linear layer at the end
- Different features: \(\arg\max_{y \in \mathcal{Y}} w_y^T f(x, y) \)
- Suppose \(\mathcal{Y} \) is a structured label space (part-of-speech tags for each word in a sentence). \(f(x,y) \) extracts features over shared parts of these
- For linear multiclass classification with discrete classes, these are identical

Feature Extraction: Multiclass, Token Tagging Tasks

Multiclass Bag-of-words

- Decision rule: \(\arg\max_{y \in \mathcal{Y}} w_y^T f(x) \)
- Too many drug trials, too few patients
- Sports
- Science
- Feature extraction:
 \[f(x) = [I[\text{contains drug}], I[\text{contains patients}], I[\text{contains baseball}]] = [1, 1, 0] \]
 \[w_{\text{health}} = [+2.1, +2.3, -5] \]
 \[w_{\text{sports}} = [-2.1, -3.8, +5.2] \]
 \[w_{\text{science}} = [+1.1, -1.7, -1.3] \]

\[w_y^T f(x) = \begin{cases} +4.4 & \text{Health} \\ -5.9 & \text{Sports} \\ -0.6 & \text{Science} \end{cases} \]

- argmax
Features for Tagging Tasks

- Part-of-speech tagging (discussed later in the semester): make a classification decision about each word. Is “blocks” a verb or a noun? (~10-40 POS tags depending on the tagset, language, etc.)

- Input: sequence of words \(x \), output is a sequence of tags \(y \)

- Simpler version: input is a sequence of words \(x \) and one index \(i \) we care about, output is the tag \(y \) for that position

\[
P(y = \text{VBZ} \mid x = \text{the router blocks the packets}, i = 2)
\]

Features for Tagging Tasks

- Do bag-of-words features work here?

- Instead we need position-sensitive features. Let’s see how this works with different features

Feature Extraction

- Position-sensitive feature extractor: function from (sentence, position) => sparse feature vector describing that position in the sentence

 - “Current word”: what is the word at this index?
 - “Previous word”: what is the word that precedes the index?

\[
f(x, i=2) = [0, 1, 1, 1, \ldots]
\]

- Feature vector only has 2 nonzero entries out of 10k+ possible

- All features coexist in the same space! Other feats (char level, ...) possible

Different Features for Multiclass

- Classify blocks as one of 36 POS tags

- Example is a (sentence, index) pair \((x, i=2)\): the word blocks in this sentence. Let’s look at the different features view of extraction

\[
f(x, y=\text{VBZ}) = [\text{curr_word=blocks \& tag = VBZ},
\text{prev_word=router \& tag = VBZ},
\text{next_word=the \& tag = VBZ},
\text{curr_suffix=s \& tag = VBZ}]
\]

- Get features for all tags, score, take the highest scoring one — but just one weight vector!
Multiclass Logistic Regression

Training

- Multiclass logistic regression $P_w(y = \hat{y} \mid x) = \frac{\exp\left(\mathbf{w}_{\hat{y}}^\top \mathbf{f}(\mathbf{x})\right)}{\sum_{y'} \exp\left(\mathbf{w}_{y'}^\top \mathbf{f}(\mathbf{x})\right)}$
- Log loss:
 \[
 \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = -\mathbf{w}_{y^{(i)}}^\top \mathbf{f}(\mathbf{x}^{(i)}) + \log \sum_{y} \exp(\mathbf{w}_{y}^\top \mathbf{f}(\mathbf{x}^{(i)}))
 \]
 \[
 \frac{\partial}{\partial \mathbf{w}_{y^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = -\mathbf{f}(\mathbf{x}^{(i)}) + \frac{\mathbf{f}(\mathbf{x}^{(i)}) \exp(\mathbf{w}_{y^{(i)}}^\top \mathbf{f}(\mathbf{x}^{(i)}))}{\sum_{y'} \exp(\mathbf{w}_{y'}^\top \mathbf{f}(\mathbf{x}^{(i)}))}
 \]
 \[
 \frac{\partial}{\partial \mathbf{w}_{y^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = -\mathbf{f}(\mathbf{x}^{(i)}) + \mathbf{f}(\mathbf{x}^{(i)}) P_w(y^{(i)} \mid \mathbf{x}^{(i)})
 \]
- Update for other classes is the same but without the first term

Multiclass Logistic Regression

- Compare to binary:
 \[
 P_w(y = + \mid x) = \frac{\exp(\mathbf{w}^\top \mathbf{f}(\mathbf{x}))}{1 + \exp(\mathbf{w}^\top \mathbf{f}(\mathbf{x}))}
 \]
- Log likelihood for negative class implicitly has a weight vector of all zeroes
- exp/sum(exp): also called softmax
- Training: maximize
 \[
 \mathcal{L}(D) = \sum_{i=1}^{n} \log P_w(y^{(i)} \mid x^{(i)})
 \]

(we’ll minimize the negation of this objective)

\[
= \sum_{i=1}^{n} \left(\mathbf{w}_{y^{(i)}}^\top \mathbf{f}(\mathbf{x}^{(i)}) - \log \sum_{y'} \exp(\mathbf{w}_{y'}^\top \mathbf{f}(\mathbf{x}^{(i)}))\right)
\]

Training

\[
\frac{\partial}{\partial \mathbf{w}_{y^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = -\mathbf{f}(\mathbf{x}^{(i)}) + \mathbf{f}(\mathbf{x}^{(i)}) P_w(y^{(i)} \mid \mathbf{x}^{(i)})
\]

\[\text{too many drug trials, too few patients} \quad y^* = \text{Health}\]

\[\mathbf{f}(\mathbf{x}) = [1, 1, 0] \quad P_w(y \mid x) = [0.2, 0.5, 0.3]\]

(made up values)

gradient $\mathbf{w}_{\text{Health}} = -[1, 1, 0] + 0.2[1, 1, 0]$ When we make these updates: make Sports and Science look less like the example, make Health look more like it

gradient $\mathbf{w}_{\text{Sports}} = 0.5[1, 1, 0]$

gradient $\mathbf{w}_{\text{Science}} = 0.3[1, 1, 0]$
Multiclass Logistic Regression: Summary

- Model: \(P_w(y = \hat{y} | x) = \frac{\exp \left(w_{\hat{y}}^T f(x) \right)}{\sum_{y'} \exp \left(w_{y'}^T f(x) \right)} \)
- Inference: \(\arg\max_{y \in Y} w_y^T f(x) \) (equivalent to finding most likely \(y \))
- Learning: gradient descent on the log loss
 \[
 \frac{\partial}{\partial w_{y(i)}} L(x^{(i)}, y^{(i)}) = f(x^{(i)}) (P_w(y^{(i)} | x^{(i)}) - 1)
 \]
 \[
 \frac{\partial}{\partial w_{\hat{y}}} L(x^{(i)}, y^{(i)}) = f(x^{(i)}) P_w(y^{(i)} | x^{(i)})
 \]
 “move towards \(f(x) \) in proportion to how wrong you were”

Generative vs. Discriminative Models

Learning in Probabilistic Models

- So far we have talked about discriminative classifiers (e.g., logistic regression which models \(P(y|x) \))
- Cannot analytically compute optimal weights for such models, need to use gradient descent
- What about generative models? Let’s briefly look at a generative classifier (naive Bayes) which will introduce useful concepts about maximum likelihood estimation

Naive Bayes

- Data point \(x = (x_1, ..., x_n) \), label \(y \in \{0, 1\} \)
- Formulate a probabilistic model that places a distribution \(P(x, y) \)
- Compute \(P(y|x) \), predict \(\arg\max_y P(y|x) \) to classify

\[
P(y|x) = \frac{P(y)P(x|y)}{P(x)} \quad \text{Bayes’ Rule}
\]

\[
\propto P(y) P(x|y) \quad \text{constant: irrelevant for finding the max}
\]

\[
P(y) \prod_{i=1}^n P(x_i|y) \quad \text{“Naive” assumption:}
\]
Maximum Likelihood Estimation

- Data points \((x_j, y_j)\) provided \((j\) indexes over examples\)
- Find values of \(P(y), P(x_i|y)\) that maximize data likelihood (generative):
 \[
 \prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \left[\prod_{i=1}^{n} P(x_{ji}|y_j) \right]
 \]
 data points \((j)\) features \((i)\) \(i\)th feature of \(j\)th example

Equivalent to maximizing log of data likelihood:
\[
\sum_{j=1}^{m} \log P(y_j, x_j) = \sum_{j=1}^{m} \log P(y_j) + \sum_{i=1}^{n} \log P(x_{ji}|y_j)
\]

Can do this by counting and normalizing distributions!

Maximum Likelihood Estimation

- Imagine a coin flip which is heads with probability \(p\)
- Observe \((H, H, H, T)\) and maximize likelihood: \(\prod_{j=1}^{m} P(y_j) = p^3(1-p)\)

Easier: maximize \(\log\) likelihood
\[
\sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log(1-p)
\]

Maximum likelihood parameters for binomial/multinomial = read counts off of the data + normalize

Neural Net History
History: NN “dark ages”

- Convnets: applied to MNIST by LeCun in 1998
- LSTMs: Hochreiter and Schmidhuber (1997)

2008-2013: A glimmer of light...

- Collobert and Weston 2011: “NLP (almost) from scratch”
 - Feedforward neural nets induce features for sequential CRFs (“neural CRF”)
 - Basically tied SOTA in 2011, but with lots of computation (two weeks of training embeddings)
- Socher 2011-2014: tree-structured RNNs working okay
- Krizhevsky et al. (2012): AlexNet for vision

2014: Stuff starts working

- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs)
- Chen and Manning transition-based dependency parser (based on feedforward networks)
- What made these work? Data, optimization (initialization, adaptive optimizers), representation (good word embeddings)

Takeaways

- Two views of multiclass logistic regression:
 - Different weights: one weight vector per class, fixed features
 - Different features: single weight vector for all classes, features differ for each class (but in a systematic way)
- Gradient looks like binary logistic regression gradient: softly move gold weight vector towards the example (also move all other weight vectors away from the example)
- Next time: neural networks
 - Extension of multiclass logistic regression with a nonlinearity