
Project 1: Linear and Neural Sentiment Classification

Academic Honesty: Please see the course syllabus for information about collaboration in this course.
While you may discuss the assignment with other students, all work you submit must be your own!

Goals The main goal of this assignment is for you to get experience with linear classifiers and simple
neural networks, comparing and contrasting how the two do on sentiment analysis. You’ll see the standard
pipeline used in many NLP tasks (reading in data, preprocessing, training, and testing), understand how
feature extraction works for linear models, and see how that compares to a shallow neural network based on
word embeddings.

Your task is to complete both parts below, as well as TWO of the optional “Exploration” pieces.

Dataset and Code

Please use Python 3.5+ and a recent version of PyTorch for this project.
The list of installed packages in the autograder is: numpy, nltk, spacy, torch, scipy, matplotlib,

torchvision. In addition, the autograder has the nltk stopword list downloaded and has en core web sm
installed for spaCy.

Installing PyTorch You will need PyTorch for this project. To get it working on your own machine, you
should follow the instructions at https://pytorch.org/get-started/locally/. The assign-
ment is small-scale enough to complete using CPU only, so don’t worry about installing CUDA and getting
GPU support working unless you want to.

Installing via anaconda is typically easiest, especially if you are on OS X, where the system python has
some weird package versions. Installing in a virtual environment is recommended but not essential.

Data You’ll be using the movie review dataset of Socher et al. (2013). This is a dataset of movie re-
view snippets taken from Rotten Tomatoes. The labeled data actually consists of full parse trees with each
constituent phrase of a sentence labeled with sentiment (including the whole sentence). The labels are
“fine-grained” sentiment labels ranging from 0 to 4: highly negative, negative, neutral, positive, and highly
positive.

We are tackling a simplified version of this task which frequently appears in the literature: positive/negative
binary sentiment classification of sentences, with neutral sentences discarded from the dataset. The data files
given to you contain of newline-separated sentiment examples, consisting of a label (0 or 1) followed by a
tab, followed by the sentence, which has been tokenized but not lowercased. The data has been split into
a train, development (dev), and blind test set. On the blind test set, you do not see the labels and only the
sentences are given to you. The framework code reads these in for you.

Getting started Download the code and data. Expand the file and change into the directory. To confirm
everything is working properly, run:

python sentiment_classifier.py --model TRIVIAL

This loads the data, instantiates a TrivialSentimentClassifier that always returns 1 (positive),
and evaluates it on the training and dev sets. The reported dev accuracy should be Accuracy: 444 /
872 = 0.509174. Always predicting positive isn’t so good!

1



Framework code The framework code you are given consists of several files. sentiment classifier.py
is the main class. It uses argparse to read in several command line arguments. It’s okay to add command
line arguments during development or do whatever you need for experimentation, but your submission to
Gradescope should work without modifying this file. For the existing arguments, you should not need to
modify the paths if you execute within the p1-distrib directory. --model and --feats control the
model specification. This file also contains evaluation code. The main method loads in the data, initializes
the feature extractor, trains the model, and evaluates it on train, dev, and blind test, and writes the blind test
results to a file.

Data reading is handled in sentiment data.py. This also defines a SentimentExample object,
which wraps a list of words with an integer label (0/1), as well as a WordEmbeddings object, which
contains pre-trained word embeddings for this dataset.
utils.py implements an Indexer class, which can be used to maintain a bijective mapping between

indices and features (strings).
models.py is the primary file you’ll be modifying. It defines base classes for the FeatureExtractor

and the classifiers, and defines the train logistic regression and train deep averaging network
functions, which you will be implementing. train model is your entry point which you may modify if
needed.

Part 1: Logistic Regression (30 points)

In this part, you should implement a logistic regression classifier with a bag-of-words unigram featurization,
as discussed in lecture and the textbook. This will require modifying train logistic regression,
UnigramFeatureExtractor, and LogisticRegressionClassifier, all in models.py. train logistic regression
should handle the processing of the training data using the feature extractor. LogisticRegressionClassifier
should take the results of that training procedure (model weights) and use them to do inference.

The purpose of this assignment is to see training logistic regression “from scratch” rather than
using scikit-learn. Accordingly, the autograder does not have sk-learn installed.

Feature extraction First, you will need a way of mapping from sentences (lists of strings) to feature
vectors, a process called feature extraction or featurization. A unigram feature vector will be a sparse vector
with length equal to the vocabulary size. There is no single right way to define unigram features. For
example, do you want to throw out low-count words? Do you want to lowercase? Do you want to discard
stopwords? Do you want the value in the feature vector to be 0/1 for absence or presence of a word, or
reflect its count in the given sentence?

You can use the provided Indexer class in utils.py to map from string-valued feature names to
indices. Note that later in this assignment when you have other types of features in the mix (e.g., bigrams in
Part 3), you can still get away with just using a single Indexer: you can encode your features with “magic
words” like Unigram=great and Bigram=great|movie. This is a good strategy for managing com-
plex feature sets.

There are two approaches you can take to extract features for training: (1) extract features “on-the-fly”
during training and grow your weight vector as you add features; (2) iterate through all training points and
pre-extract features so you know how many there are in advance (optionally: build a feature cache to speed
things up for the next pass).

Feature vectors Since there are a large number of possible features, it is always preferable to represent
feature vectors sparsely. That is, if you are using unigram features with a 10,000 word vocabulary, you

2



should not be instantiating a 10,000-dimensional vector for each example, as this is very inefficient. Instead,
you want to maintain a list of only the nonzero features and their counts. Our starter code suggests Counter
from the collections as the return type for the extract featuresmethod; this class is a convenient
map from objects to floats and is useful for storing sparse vectors like this.

Weight vector The most efficient way to store the weight vector is a fixed-size numpy array.

SGD and randomness Throughout this course, the examples in our training sets not necessarily randomly
ordered. You should make sure to randomly shuffle the data before iterating through it. Even better,
you could do a random shuffle every epoch.

Random seed If you do use randomness, you can either fix the random seed or leave it variable. Fixing
the seed (with random.seed) can make the behavior you observe consistent, which can make debugging
or regression testing easier (e.g., ensuring that code refactoring didn’t actually change the results). However,
your results are not guaranteed to be exactly the same as in the autograder environment.

Part 1 Deliverable Implement unigram logistic regression. To receive full credit on this part, you must
get at least 77% accuracy on the development set, and the training and evaluation (the printed time) should
take less than 20 seconds.1

Exploration Try a few different “schedules” for the step size (having one be the constant schedule is fine).
One common one is to decrease the step size by some factor every epoch or few; another is to decrease it
like 1

t . How do the results change?
Compare the training accuracy and development accuracy of the model. Plot (using matplotlib or an-

other tool) the training objective (dataset log likelihood) and development accuracy of logistic regression
vs. number of training iterations for a couple of different step sizes. Think about what you observe and what
it means.

Exploration Implement and experiment with BigramFeatureExtractor. Bigram features should
be indicators on adjacent pairs of words in the text. Then experiment with at least one other feature modifi-
cation in BetterFeatureExtractor. Things you might try: other types of n-grams, tf-idf weighting,
clipping your word frequencies, discarding rare words, discarding stopwords, etc. This feature modifica-
tion should not just consist of combining unigrams and bigrams.

Part 2: Deep Averaging Network (40 points)

In this part, you’ll implement a deep averaging network as discussed in lecture and in Iyyer et al. (2015). If
our input s = (w1, . . . , wn), then we use a feedforward neural network for prediction with input 1

n

∑n
i=1 e(wi),

where e is a function that maps a word w to its real-valued vector embedding. train deep averaging network
is your entry point for this part.

You’ll now need the WordEmbeddings class. This class wraps a matrix of word vectors and an Indexer
in order to index new words. The Indexer contains two special tokens: PAD (index 0) and UNK (index 1).

1Our autograder hardware is fairly powerful and we will be lenient about rounding, so don’t worry if you’re close to this
threshold.

3



UNK can stand in words that aren’t in the vocabulary, and PAD is useful for implementing batching later.
Both are mapped to the zero vector by default.

You’ll want to use get initialized embedding layer to get a torch.nn.Embedding layer
that can be used in your network. This layer is trainable (if you set frozen to False, which will be slower),
but is initialized with the pre-trained embeddings.

Data You are given two sources of pretrained embeddings you can use: data/glove.6B.50d-relativized.txt
and data/glove.6B.300d-relativized.txt (the default, which usually works better but takes
longer). The loading of which is controlled by the --word vecs path. These are trained using GloVe
(Pennington et al., 2014). These vectors have been relativized to your data, meaning that they do not contain
embeddings for words that don’t occur in the train, dev, or test data. This is purely a runtime and memory
optimization.

PyTorch example ffnn example.py implements the network discussed in lecture for the synthetic
XOR task. It shows a minimal example of the PyTorch network definition, training, and evaluation loop.
Feel free to refer to this code extensively and to copy-paste parts of it into your solution as needed. Most
of this code is self-documenting. The most unintuitive piece is calling zero grad before calling back-
ward! Backward computation uses in-place storage and this must be zeroed out before every gradient
computation.

Implementation Following the example, the rough steps you should take are:

1. Define a subclass of nn.Module that does your prediction. This should return a log-probability
distribution over class labels. Your module should take a list of word indices as input and embed them
using a nn.Embedding layer initialized appropriately.

2. Compute your classification loss based on the prediction. In lecture, we saw using the negative log
probability of the correct label as the loss. You can do this directly, or you can use a built-in loss
function like NLLLoss or CrossEntropyLoss. Pay close attention to what these losses expect as
inputs (probabilities, log probabilities, or raw scores).

3. Call network.zero grad() (zeroes out in-place gradient vectors), loss.backward (runs the
backward pass to compute gradients), and optimizer.step to update your parameters.

Implementation and Debugging Tips Come back to this section as you tackle the assignment!

• You should print training loss over your models’ epochs; this will give you an idea of how the learning
process is proceeding.

• You should be able to do the vast majority of your parameter tuning in small-scale experiments. Try to
avoid running large experiments on the whole dataset in order to keep your development time fast.

• If you see NaNs in your code, it’s likely due to a large step size. log(0) is the main way these arise.

• For creating tensors, torch.tensor and torch.from numpy are pretty useful. For manipulating
tensors, permute lets you rearrange axes, squeeze can eliminate dimensions of length 1, expand
or repeat can duplicate a tensor across a dimension, etc. You probably won’t need to use all of these
in this project, but they’re there if you need them. PyTorch supports most basic arithmetic operations
done elementwise on tensors.

4



• To handle sentence input data, you typically want to treat the input as a sequence of word indices. You
can use torch.nn.Embedding to convert these into their corresponding word embeddings.

• Google/Stack Overflow and the PyTorch documentation2 are your friends. Although you should not
seek out prepackaged solutions to the assignment itself, you should avail yourself of the resources out
there to learn the tools.

Part 2 Deliverable Implement the deep averaging network. Your implementation should consist of av-
eraging vectors and using a feedforward network, but otherwise you do not need to exactly reimplement
what’s discussed in Iyyer et al. (2015). Things you can experiment with include varying the number of lay-
ers, the hidden layer sizes, which source of embeddings you use (50d or 300d), your optimizer (Adam is a
good choice), the nonlinearity, whether you add dropout layers (after embeddings? after the hidden layer?),
and your initialization.

You should get least 77% accuracy on the development set without the autograder timing out; you
should aim for your model to train in less than 10 minutes or so (and you should be able to get good
performance in 3-5 minutes on a recent laptop).

If the autograder crashes but your code works locally, there is a good chance you are taking too much time
(the autograder VMs are quite weak). Try reducing the number of epochs so your code runs in 3-4 minutes
and resubmitting to at least confirm that it works.

Exploration Implement batching in your neural network. To do this, you should modify your nn.Module
subclass to take a batch of examples at a time instead of a single example. You should compute the loss over
the entire batch. Otherwise your code can function as before. You can also try out batching at test time by
changing the predict all method.

Note that different sentences have different lengths; to fit these into an input matrix, you will need to
“pad” the inputs to be the same length. If you use the index 0 (which corresponds to the PAD token in the
indexer), you can set padding idx=0 in the embedding layer. For the length, you can either dynamically
choose the length of the longest sentence in the batch, use a large enough constant, or use a constant that
isn’t quite large enough but truncates some sentences (will be faster).

Exploration Try out an additional neural architecture, such as an LSTM or a CNN. What hyperparameters
did you use? What performance do you observe?

Writeup (30 points) and Code Submission

Writeup

You should submit a brief 1-page writeup. In it, you should describe anything distinctive about your im-
plementation, but mostly focus on reporting your results and describing what you tried with the two
Exploration pieces. Your writeup should be at most 1 page of text, with a second page for any plots or
graphs necessary. (You will not be penalized for including more, but we do not want to see long writeups
for this part.)

2https://pytorch.org/docs/stable/index.html

5



Code Submission

You will upload your code to Gradescope. Your code will be evaluated by our autograder on several axes:

1. Execution: your code should train and evaluate within the time limits without crashing

2. Accuracy on the development set of your unigram logistic regression

3. Accuracy on the blind test set: this is not explicitly reported by the autograder but we may consider it,
particularly if it differs greatly from the dev performance (by more than a few percent)

The only file you will be submitting is models.py, which should be submitted as an individual file up-
load. If you wish to implement other classes or functions, put them in models.py even if this might not be
the ideal coding practice. Importing additional utilities is allowed, but the autograder environment may not
have every package. We therefore recommend you stick to numpy, nltk, PyTorch (for future assignments),
and the provided utilities.

Note that at the course staff’s discretion, you may receive a higher score than what the autograder
gives you. The autograder cutoffs are set to assign reasonable scores to high-performing submissions. If
your code doesn’t work or achieves very low performance, we will assess what you’ve done manually and
award partial credit appropriately.

Make sure that the following commands work before you submit:

python sentiment classifier.py --model LR --feats UNIGRAM

python sentiment classifier.py --model DAN

Note: we will not run the BIGRAM or BETTER features if you choose to implement these; we will just
judge what you’ve done from your writeup.

References

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. 2015. Deep Unordered Composition
Rivals Syntactic Methods for Text Classification. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL).

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Represen-
tation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts.
2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP).

6


