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... With coarse pruning and caching of neural net operations
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Roughly 2x slower than with sparse features alone
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Learning

Just Maximum Likelihood!

... With backpropagation through each local neural network

Optimization: Adadelta (Zeiler, 2012) worked slightly better than
Adagrad (Duchi et al., 2011)
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» Syntactic vectors are best for parsing (Bansal et al., 2014; Levy and Goldberg, 2014)

» Don’t need huge unlabeled corpora for these methods to be effective
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Transition-based neural parsers: Henderson (2003), Chen and
Manning (2014)

Local decisions only: Belinkov et al. (2014)

Sequence-to-sequence LSTM: Vinyals et al. (2014)



Results: Other Languages



Results: Other Languages

Nine morphologically-rich languages from the SPMRL shared task



Results: Other Languages

Nine morphologically-rich languages from the SPMRL shared task

Word vectors trained on SPMRL monolingual data with word2vec
(approximately 100M tokens per language)
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Results: Other Languages

B Halletal. (2014) [ Sparse+Neural

Test set F; all lengths

Average Arabic Basque French German Hebrew Hungarian

» Works well even on smaller treebanks

Korean

Polish
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Conclusion

Neural nets can combine with CRFs to provide continuous features
in discrete structured models

Inference and learning are unchanged from the purely discrete model

High performance on constituency parsing for a range of languages

nlp.cs.berkeley.edu/projects/neuralcrf.shtml

Thank you!



