Outline
of
CS 356: Computer Networks

Mohamed Gouda
Architecture of Internet

- Computers + subnetworks:

 1st hop 2nd hop 3rd hop

- Types of computers:
 - Router:
 - Client host:
 - Server host:

- Types of subnetwork technologies:
 - LANs (switched Ethernets)
 - Wireless LANs
 - Phone lines
 - TV cables
 - Satellite links
Example: Enterprise Network

Switch \(\text{Rest of Internet}\) switch

router \(\text{Rest of Internet}\) router

base station mobile hosts

server switched \(\text{Ethernet}\)

client switched \(\text{Ethernet}\)
Internet Service Providers (ISPs) 3

- to navigate a msg from a first router to a last router, the msg needs to go through a sequence of ISPs.

- each ISP is a set of inter-connected routers

- the ISPs are organized in a tree of 3 levels.
The ISP Tree

- has 4 levels:
 - L1: Tier 1 ISP
 - L2: Regional ISPs
 - L3: Local ISPs
 - L4: Access Networks (ANs)

- if Li ISP is connected to L(i+1) ISP then Li ISP is a provider for L(i+1) ISP and L(i+1) ISP is a customer for Li ISP
ISP Tree Is Not Perfect

- there is a dozen Tier-1 ISPs: AT&T, Sprint, NTT

- there are multiple regional ISPs for same region

- multihoming:
 an ISP in level i can be connected to 2 or more ISPs in level $(i-1)$

- peering:
 two Access Networks can be connected on settlement-free basis

- shortcut:
 an Access Network or an ISP in level 3 can be connected directly to Tier-1 ISP
A network protocol specifies:
- formats of exchanged msgs
- order in which msgs are sent and rcvd
- actions that need to be executed when a msg is sent or rcvd
Four Protocol Layers in Internet

- 2 types of communications:
 - virtual
 - physical
<table>
<thead>
<tr>
<th>Functions of Protocol Layers in Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>application layer: allows human user to execute desired applications, e.g. web, email, ...</td>
</tr>
<tr>
<td>transport layer: ensures that communication between original src and ultimate dst satisfies some end-to-end properties, e.g. reliable data transfer, flow control, ...</td>
</tr>
<tr>
<td>network layer: routes a msg through several hops from original src and ultimate dst</td>
</tr>
<tr>
<td>link layer: transmits a msg one hop from one computer to another over one subnetwork</td>
</tr>
</tbody>
</table>
Msg Encapsulation

```
http, ...

msg:
  AH text

UDP, TCP
  transport

segment
  TH AH text

IP
  network

packet
  NH TH AH text

switched Ethernet

Frame
  LH NH TH AH text
```

AH : application header
TH : transport header
NH : network header
LH : link header