
CS337: Project 2

TA : Taehwan Choi
Release Date: October 6 (Monday)

Due Date: October 22(Wednesday), 11:59pm

1 Introduction

There are two types of encryption algorithms : symmetric and asymmetric. Symmetric encryption
algorithm uses a same key for encryption and decryption. Thus, it is symmetric. It is used for
a long time and bothers people how to share a key before they want to communicate with each
other. On the other hand, asymmetric encryption algorithm uses different keys for encryption and
decryption. And it is a remarkable progress in cryptography. The first asymmetric encryption
algorithm was invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman. Thus, it is
named after their initials from each inventor, and becomes RSA.

The RSA algorithm depends on the complexity of prime factorization problem. What is prime
factorization problem? Prime factorization is an act of splitting an integer into a set of smaller
integers, which form the original integer when they are multiplied together. For example, the
factors of 6 are 2 and 3 and the factoring problem is to find 2 and 3 given 6. It is known that
155-digit number RSA-155 was factored after seven months of extensive computations. Thus, it is
not trivial to implement the RSA algorithm. However, for this project, we will use a small number
to implement the RSA algorithm and have a chance to explore the RSA algorithm. You will not
need to use a large number and you will be able to implement your project only with standard
primitive types such as Java ’long’ data type. There are some data types providing a large number
such as Java BigInteger, but you don’t have to use those existing libraries. You are only allowed to
use Java primitive data types like ’long’ data type. You will be penalized if you are caught to use
those existing libraries. Remember that this project is designed to implement the RSA algorithm
for educational purposes and this will be fun.

2 Deliverables

2.1 Files

You are expected to submit the following files:

1. RSAGenKey.java : Generates a private key

2. RSAEncrypt.java : Encrypts a file

3. RSADecrypt.java : Decrypts a file

1

4. names.txt : Your CS id, name and UTEID, section number including your partner’s infor-
mation one each line.
butch, Butch Cassidy, bc0000, 55625
sundance, Sundance Kid, sk0000, 55625

2.2 Turnin

You will turnin your files as follows:

$turnin --submit ctlight project2 RSAGenKey.java RSAEncrypt.java RSADecrypt.java

names.txt

1. Please do not turn in a compressed or tarred version of your files.

2. Please do not submit your files with a directory. Please strictly follow the turnin command
as it is.

3. Please follow the file names. Your programs might not be graded if you don’t follow the file
names.

4. No late submission is allowed.

5. Please check your program in CS linux machines since it will be graded in CS linux machines.
If your program is not working correctly in CS linux machines, your program will be panalized.

Please include the header for each file as follows:

/**

File: RSAGenKey.java

Description: Generates a private key of RSA

Student Name: Butch Casidy, Sundance Kid

Student UT EID: bc0000, sk0000

Course Name: CS 337

Section Number: 55625

*/

It is very important to follow the specifications since your project will be graded automatically.
It is your responsibility to follow the specifications provided and you will be subject to a penalty if
you do not meet the specifications.

3 Key Generation

Recall from the steps of the RSA scheme in section 3.3.2. In order to communicate with other
party by RSA, you need to choose two large prime numbers p and q. If you multiply p and q,
you will get n. As we discussed, it is hard to factor p and q from n. It is customary to choose
e, public key, to be a small value less than n. If you pick e, d is determined uniquely. How do

2

we determine d? You learned the Extended Euclid Algorithm in class and you will implement the
program, “RSAGenKey.java” to compute d, public key given p, q, and e.

For the purpose of this project we will restrict n to be between 224 and 230. This restriction will
allow you to do all the required computations for encryption and decryption using just the Java
built-in long data type.

Submission

Your program, “RSAGenKey.java”, takes input as p, q, and e as command line as follows:
java RSAGenKey p q e

The output of your program will be as follows:
n

e
d

The output must be one in each line. A sample input/ouput of the program is as follows:
$java RSA 6551 4733 8311

31005883

8311

11296191

4 File encryption

For this part of the project, you will write a Java program to encrypt an arbitrary file. Note that
the RSA algorithm specifies how to encrypt a single number (< n). To encrypt a file, it is sufficient
to break up the file into blocks so that each block can be treated as a number and encrypted by
the RSA algorithm. For this project, you will use a block size of 3 bytes. To treat each block as
a number, simply concatenate the bit representation of the 3 bytes to form a single number. Note
that this number will be between 0 and 224 and so, will be less than n (why?), allowing us to use
the RSA encryption algorithm for a single number.

After encrypting the block, the encrypted number has to be written out to the output file. This
number is between 0 and n, and therefore, potentially between 0 and 230. To write out this number,
simply break the number into 4 bytes based on the bit representation of the number and write out
the 4 bytes in order from left to right.

Let us now walk through the entire process with an example. Suppose the input file consists
of the following bytes (in order) : 75, 34, 107, 23 To generate the first encrypted number,
pick up the first block consisting of three bytes : 75, 34, 107. Form the number from this block by
concatenating the bit representations of these bytes - 01001011, 00100010, 01101011. This number
is 00000000 01001011 00100010 01101011. Now, encrypt this number by the RSA algorithm to get
the number (say) 01011000 00110110 00001000 10001100. To write out this encrypted number to
the file, break it up into 4 bytes, reading the bits from left to right - 01011000, 00110110, 00001000
and 10001100. Write out these 4 bytes in this order to the output file.

Remark: It is possible that the input file is not an exact multiple of 3 bytes. In such a case
you may consider the last or the last two bytes to be null, i.e. as ‘00000000’.

3

Submission

The encryption algorithm should be runnable from a file named “RSAEncrypt.java” (that is, this
file should have the main method). The program will be called with a plaintext file and a key file
as the arguments. The key file will contain n,e and d, one each on a line. So for this part you
should use (e, n) to encrypt the message.

The program will be invoked as :
$java RSAEncrypt file key.txt

where file is the name of the file to be encrypted.
The encrypted file that the program generates should be named file.enc where “file” is a

plaintext.

5 File decryption

For this part of the project, you will write a program to decrypt the encrypted file that has been
generated by the encryption procedure described earlier.

This procedure is the exact reverse of the encryption procedure. You will read from the en-
crypted file in blocks of 4 bytes, with each set of 4 bytes forming an encrypted number. The RSA
decryption algorithm specifies how to decrypt an encrypted number. This will give you the number
that was formed from the original plaintext file. Now, remember that this number was formed by
concatenating 3 bytes from the plain text file. To get back those 3 bytes from this number, you
will have to pick out the lower order 3 bytes from this number and write them out in order to the
output file (the topmost byte of this number will always be 0, can you see why?).

Let us walk through this procedure with an example. Suppose the encrypted file consists of
the following bytes : 88, 54, 8, 140, . . . (these were the same bytes that were written out in the
example for the encryption procedure). The encrypted number is formed by concatenating the bit
representations of these numbers together - 01011000 00110110 00001000 10001100. Decrypting this
number by the RSA algorithm gives the original number 00000000 01001011 00100010 01101011.
This number is then split into the original 3 bytes by taking the lower order 3 bytes in the same
order 01001011, 00100010, and 01101011.

Submission

The decryption algorithm should be runnable from a file named “RSADecrypt.java” (that is, this
file should have the main method). The program will be called with the input encrypted file and
the key file as arguments. The key file will be in the same format as described previously.

The program will be invoked as :
$java RSADecrypt file.enc key.txt

where file.enc is the name of the file to be decrypted.
The decrypted file that the program generates should be named “file.dec”.

6 Notes

Note that your program should stick to the specifications laid out in this description in all respects,
from the order in which bytes are written to the order of the command line arguments of the
program. Your encryption routines should work correctly when used with other correct

4

decryption routines and vice versa. It is therefore necessary for you to follow every specification
exactly.

The RSA encryption and decryption algorithms involve modular exponentiation. Straightfor-
ward exponentiation will require you to manage really huge numbers that will be outside the limits
of the basic Java data type ‘long’. For this reason, it is necessary that you use the al-
gorithm for fast modular exponentiation that is described in the class notes (Section
3.3.2).

It is not necessary for your programs to handle erroneous input formats. In cases like these, or
say, when an attempt is made to decrypt a file with a key file different from that used to encrypt
the file, it is okay for your program to crash. We will not test your code for such cases.

Enjoy the project!!

5

