
CS337 Project 3

Finite State Machines

TA: Yan Li (yanli@cs.utexas.edu)

Release Date: Oct. 27, 2008 (Monday)
Due Date: Nov. 10, 2008 11:59 PM (Monday)

1 Overview

In this project, you and your partner (please find a partner early!) will create some simple
Finite State Machines(FSMs), then implement a finite state machine interpreter to test your
FSMs on input strings. This project consists of three parts:

part 1: Create seven finite state machines to match the given string patterns. You do not
need to turnin anything for this part but they will be used for part 2.

part 2: Translate the diagram of each FSM from part 1 into a format (saved into a file
for each FSM) that can be read by a computer program.

part 3: Implement a program that reads any description files of FSMs (obtained from
part 2 or any other .fsm files in the same format) and a file of strings, and prints if your
finite state machines accepts the input strings.

The alphabet for this project is (Note: no uppercase letter in this alphabet and space is
not part of the alphabet.):

abcdefghijklmnopqrstuvwxyz0123456789~!@#%^&*()-+{}.,

There are four uppercase letters we will use as shorthand for different sets of the alphabet
which you should use in your FSM description files in part 2. And you MUST implement
these shortcuts in part 3.

(‘A’) Alphabetic: abcdefghijklmnopqrstuvwxyz

(‘D’) Digit: 0123456789

(‘N’) Non-Zero: 123456789

(‘S’) Symbolic: ~!@#%^&*()-+{}.,

1

2 Part 1

Use the notation described in class to create a unique finite state diagram for each of the
following seven string descriptions. Number the state in each FSM as 1, 2, 3, So the
start state for each machine should be 1. Refer to Figure 1 for an example of a finite state
diagram. You do not need to turn in anything for this part. But these diagrams will be used
in Part 2.

NOTE: You do not need to make reject state in the FSMs. Draw the transitions only for
valid inputs and any other input not shown would be considered as going to the reject state.

Warning: The empty string must be rejected by all Finite State Machines.

1. Accept only integers, where integers are defined as either a single 0, or a nonzero digit
followed by any number of digits. Examples: 0, 3802 will be accepted. But 061 should
be rejected.

2. Accept only comma-separated integers (use integer as defined above). Examples: 2, 000
or 6, 500, 000 will be accepted. But 3000 and 3, 00, 0 must be rejected. Note that the
commas must be in the thousandth, millionth, billionth, etc. positions. If the number
is 999 or less it should be accepted.

3. Accept signed and unsigned integers (use integer as defined above). Examples: −5,
+45, 45, and 0 will be accepted. But +0, −45.5, and −0.3 must be rejected.

4. Accept any string that uses the defined alphabet if it contains a keyword “begin” and/or
“end”. Examples “erikbegin”, “xendd” and “ebeginend” will be accepted. But “began”
must be rejected.

5. Accept unsigned floating point numbers which MUST contain one decimal point in the
number. With floating point numbers, a 0 can be the leading digit but only if it is the
only digit before the decimal. Examples: 0.003, 0.20, 0.000, 3.54 will be accepted. But
0..03, 1., 55, and 01.33 must be rejected.

6. Accept a string with up to 3 levels of balanced parentheses, ignoring the characters
between, before, or after the parentheses. Reject the string if the parentheses are
unbalanced, if there are no parentheses in the string, or if the nesting is deeper than
three. Examples: “compute((1+2)+((5+2*8+2)))”, and “((()))” will be accepted. But
“((((4))))”, “(()()))”, and “4+3” will be rejected.

7. Accept a string of digits if they are non-increasing. Examples: 5443, 4, 22 and 631 will
be accepted. But 234 must be rejected.

3 Part 2

In this part, you will convert each of the finite state machine diagrams from part 1 into a
text file (.fsm) that can be read by a computer program. The 7 .fsm files must be called
“machine1.fsm”, . . . , “machine7.fsm”. The .fsm file format to describe a FSM is as follows.

2

1 2

0 0

1

1

Start

Figure 1: An FSM that accepts strings with an odd number of 1s.

Each line in the file represents a single state in the FSM diagram. Below is the file called
machine0.fsm which is the machine-readable form of the diagram in Figure 1:

1 1:0 2:1

2 1:1 2:0 X

Each line has the following format:

[State Name] [NextState Name]:[Transitions] [Accepting State?]

The first token in each line is the state name. For your implementation you can expect
to see only unsigned numbers for state names. In the above example, the first line describes
state 1, the second line describes state 2. The state number will not exceed exceed a Java
int.

The Finite State Machine Interpreter will always look for, and start with, the state labeled
1. The states do not have to be in order, and there can be gaps in the numbering. A state
can only be listed once per file.

After each state name, there can be an arbitrary number of additional tokens. There are
two types of tokens, Accepting State Flags, and Next Step Pairs.

An Accepting State Flag (ASF) is the capital letter ‘X’. When an ASF is on the line, it
means the current state is an accepting state.

Note: The flag can appear before, after, or anywhere in between other Next Step Pair
tokens.

In the example file, state 2 has an ASF, so if the input string terminates in state 2, the
string is accepted. State 1 does not have an ASF, so if the string ends there, it will be
rejected.

A Next Step Pair consists of the next state name, followed by a colon (“:”) and then
the valid characters that allow the transition from current state to next state to take place.
There must not be any spaces between the name, colon, and transition characters. In the
example, state 1 transitions back to state 1 if a ‘0’ is encountered–a loop. State 1 transitions
to state 2 if a ‘1’ is encountered.

If [Transitions] has more than one symbol then you should write all the symbols together
without any space. For example, in a FSM M, if state 5 transitions to state 1 when the input
character is either ‘a’ or ‘b’; and state 5 transitions to state 2 if a ‘0’ or ‘1’ is encountered,
then the line in the corresponding M.fsm file will be as follows:

3

5 1:ab 2:01

Remember the shorthand mentioned in Part 1: If the next character in the string is not
mentioned in the current state, then the string is immediately rejected (i.e., you should not
make a reject state).

You should use the four uppercase letters described in Section 1 as a shorthand for
different sets of the alphabet in your .fsm files.

For example, To create an FSM that accepts strings which have a non-zero digit as the
first character, and zero or more characters after it, you would create a .fsm file with two
lines:

1 2:N

2 X 2:ADS

4 Part 3

In this part, you need to write a Java program “FSM.java” to read ANY .fsm files in the
format described in Part 2 (not only the seven .fsm files obtained from Part 2. I will test
your code using some FSMs not in Part 1.) and a file “tests.txt” which contains a string on
each line.

All the file names are passed from the command line as input parameters to the program
“FSM.java”. The “FSM.java” should be able to accept one or more, up to at least 10 .fsm
files and one test string file. Do NOT implement an interactive prompt to ask for input file
names.

Your program should compile and run using the following command (this example has
three .fsm files plus the test string file):

javac FSM.java

java FSM machine1.fsm machine5.fsm machine9.fsm tests.txt

You need to create your own test strings, saved in the file “tests.txt”. Assume that my
“tests.txt” will have blank lines, and end of line spaces that may need to be trimmed.

You need to evaluate each text string with each FSM you create and display which
machines accept the input. The program output should be displayed on the screen.

If you implemented both of the example .fsm files above and created a “tests.txt” that
contained:

11001101

11111

1thisshouldfailmachine0

then the output should look like:

machine0.fsm Accepted: 11001101

machine1.fsm Accepted: 11001101

machine0.fsm Accepted: 11111

machine1.fsm Accepted: 11111

machine1.fsm Accepted: 1thisshouldfailmachine0

4

If the string is rejected by a machine, do NOT print anything. The format of the above
example output should be strictly followed and they should be case-sensitive.

NOTE: There are four shortcut characters you need to implement, as mentioned in Sec-
tion 1. The uppercase letter ‘A’ should cover all alphabetic characters, ‘D’ for 0 to 9, ‘N’ for
1 to 9, and ‘S’ for symbols. You should NOT implement any other shortcuts.

5 Turning in your project

5.1 Files to be submitted

List of the files you must submit:
(The names of the files should be exactly the same as follows and case-sensitive):

1. emails.txt
“emails.txt” content and format: (You MUST follow the exact format below! Other-
wise, no comment and grade will be sent to your and your partner’s emails and I will
not post on egradebook this time about the comments.):
your CS account your email

partner CS account partner email

Example “emails.txt” (Note: There is a space between your CS account
and your email):
yanli yanli@cs.utexas.edu

burt burtkk@gamil.com

2. readme.txt (Do not forget Section#!)

NAME of partners;

Section # of partners;

EID of partners;

CODING STATUS: (very important!);

IMPORTANT: Summarize your code status in “readme.txt” file. If your code works
perfectly, explicitly saying this in the readme.txt. If you code does not work (can not
compile, or can not run, or only work for some FSMs or can not output anything, etc.),
you need to specifically explain this: what have been done so far and what have not
been done, what is working and what is not working to avoid confusion! Put proper
comments in all the code files.

3. machine1.fsm

4. machine2.fsm

5. machine3.fsm

5

6. machine4.fsm

7. machine5.fsm

8. machine6.fsm

9. machine7.fsm

10. FSM.java

11. tests.txt

5.2 turnin

To submit your project, use Linux “turn-in” program exactly as follows. Do NOT create a
directory like in project 1 this time!

turnin --submit yanli project3 emails.txt readme.txt machine1.fsm

machine2.fsm machine3.fsm machine4.fsm machine5.fsm machine6.fsm

machine7.fsm FSM.java tests.txt

To confirm your submission:

turnin --list yanli project3

ONLY ONE submission per group!

1. Please do NOT submit your files with a directory this time (so it is different from project
1!). Please strictly follow the above command as it is.

2. Please do not turn in a tarred or compressed version of your files.

3. Please strictly follow the files names. Otherwise, your submission may not be graded.

4. No late submission is allowed. The turn-in program will be turned off after the deadline
time. And no email submission is accepted.

5. You must make sure your program will work correctly on CS Linux machines. All the
text files should be generated using LINUX OS.

6 Questions and Project Clarifications

Please stick to all specifications as written. Changes and clarifications regarding this
project will be mailed to you through Blackboard. Though I do not expect any changes, you
are responsible for any modifications found there.

Good Luck!

6

