CS337: Project 4
Database Querying in Haskell

TA in charge : Tachwan Choi
Release Date: November 14 (Friday)
Due Date: December 5(Friday), 11:59pm

1 Introduction

Lists are a common data structure in computer science. Indeed, it is unusual for a program not to
use some list of data - the common array is one particular implementation of a list. Sorting is an
important operation on lists. Lists are usually maintained as ordered lists for efficiency reasons.
For this project, you will implement a number of functions over lists, including sorting operations.

Implementing list operations recursively is often more straightforward. The goal of this project
is for you to become familiar with recursion in the context of list manipulation and sorting in
Haskell. For this project, you will implement functions to return information about a database,
which consists of a list of tuples.

2 Deliverables

2.1 Files

1. projectd.hs
This is your Haskell project file. All the functions should be defined in this file. The function
name rules must be strictly followed as in Section 3

2. names.txt
Your “names.txt” must include your CS id, your preferred email, name, UTEID, and section
number in order including your partner’s information one in each line. It should be separated
by commas. I will use your preferred email to send the feedback of your grade automatically.
Your “names.txt” will be used by scripts to record your grade so that please strictly follow
the rule as follows. Do not put any other information, which is not described.

butch, butch@cs.utexas.edu, Butch Cassidy, bc0000, 55625
sundance, sundance@cs.utexas.edu, Sundance Kid, sk0000, 55625

3. output.txt
This is your output generated by your project.hs with the provided test cases as in Section 5.



2.2 Turnin

You will turnin your files as follows:

$turnin --submit ctlight project4 project4.hs names.txt output.txt

1. Please do not turn in a compressed or tarred version of your files.

2. Please do not submit your files with a directory. Please strictly follow the turnin command
as it is.

3. Please follow the file names. Your programs might not be graded if you do not follow the file
names.

4. No late submission is allowed.

5. Please check your program in CS linux machines since it will be graded in CS linux machines.
If your program is not working correctly in CS linux machines, your program will be penalized.

Please include the header in your Haskell file as follows:

-- File: project4.hs

—-- Description: project4 haskell file

-- Student Name: Butch Casidy, Sundance Kid
—-- Student UT EID: bc0000, sk0000

—-- Course Name: CS 337

—-- Section Number: 55625

It is very important to follow the specifications since your project will be graded automatically.
It is your responsibility to follow the specification and your project will be subject to be penalized
if you do not meet the specification.

3 Description

The database stores employee information and it is required to develop a number of functions. Each
entry in the database has four fields: employee, spouse, salary, and manager. The employee field
is a string which is the name of the employee, spouse is the name of his/her spouse — henceforth,
his/her will be abbreviated to “its” and “he/she” will be “it” — salary is the employees annual
salary and manager is the name of the employees manager. Assume that the database contains all
the records of a hierarchical (tree-structure) organization in which every employees spouse is also
an employee. Each manager is also an employee except root, who is the manager of all highest level
managers. There is no record for root in the database. An employee whose manager is root will
have the string “Root” in its manager field.

A manager of an employee is also called its direct manager; a super manager is either a direct
manager or a super manager of a direct manager; thus, root is every employees super manager. It
is a transitive relation.



Write functions for each of the following tasks below. Use exactly the same names for the
functions as listed below. In the following type expressions, DB is the type of the database, a list
of 4-tuples as described above. You will find it useful to define a number of auxiliary functions,
which you can use in the other functions. One such function could be salary which given a name
as an argument returns the corresponding salary.

1.

Call an employee overpaid if it has a manager and its salary exceeds its manager’s. It is
grossly overpaid if it has at least one super manager and its salary exceeds the salaries of all
its super managers. Implement functions listing all overpaid and grossly overpaid employees
in a database. Assume that root’s salary is 100,000.

overpaid :: DB -> [String]
grossly_overpaid :: DB -> [String]

. List all employees who directly manage their spouses; do the same for super management.

spouse_manager :: DB -> [String]
spouse_manager_super :: DB -> [String]

. List all managers who are super managers of both an employee and its spouse. Do not include

root in this list.

super_manager :: DB -> [String]

. Are there employees e and f such that e’s spouse is f’s manager and f’s spouse is e’s manager?

The output is the list of all such (e,f) pairs (If x and y satisfy the above conditions, both
(x,y) and (y,x) should be present in the resulting output)

nepotism :: DB -> [(String, String)]

Find the family that makes the most money. The output is a list of pair of strings with the
names of both spouses. The reason a list is returned is that more than one family may share
the maximum combined income. However, unlike the problem 4, this function should not

return the same family twice (either (x,y) or (y,x) appears, but not both).

rich :: DB -> [(String, String)]

. Define the rank of a manager as the number of employees it manages. Define the worth of

a manager as its (salary/rank). Create three lists in which you list all managers (excluding
root) in decreasing order of their salaries, ranks, and worth. Note that employees that aren’t
managers are not included in any of these results (particularly worth, since a divide by zero
error would result). You will need to convert salary and rank to type Float in order to use
the (/) operator. The fromInteger function will convert an Integer to any type (the correct
type will be inferred). Strangely enough, you may also need the tolnteger function to first
convert the type Int to type Integer.



sorted_salaries :: DB -> [String]
sorted_rank :: DB -> [String]
sorted_worth :: DB —> [String]

7. The database is in normal form if the manager of x appears as an employee before x in the
list. Write a function to convert a database to its normal form. Note that root should not
appear in the normalized database

normalize :: DB -> DB

4 Implementation

Remember that root is not part of the database. Employees whose manager is root will have the
string “Root” in the manager part of the tuple.

Your program should implement the database as a list. A sample definition of the types involved
is shown below. Do not attempt to use any non-list-based implementation of the DB.

type Employee = String

type Spouse = String

type Salary = Integer

type Manager = String

type Record = (Employee, Spouse, Salary, Manager)
type DB = [Record]

5 Test

Your output.txt should include the output generated on the following databases (cut/paste of
command and result from program). The databases also will be available to download from the
class web page. Take special care to ensure that your code works on the empty database.

database0 = [(Lana Turner, Buster Keaton, 80000, Virginia Dare),
("Ted Hughes", "Edna Millay", 70000, "Virginia Dare"),
("Virginia Dare", "Laurence Sterne", 100000, "Edna Millay"),
(Buster Keaton, Lana Turner, 80000, Ingrid Joyce),
("James Joyce", "Ingrid Joyce", 60000, "Root"),
(Vanessa Redgrave, Michael Readgrave, 110000, James Joyce),
(Michael Redgrave, Vanessa Redgrave, 40000, Vanessa Redgrave),
("Edna Millay", "Ted Hughes", 70000, "Root"),
("Laurence Sterne", "Virginia Dare", 60000, "James Joyce"),
(Ingrid Joyce, James Joyce, 60000, Virginia Dare)]

databasel ]

[(Carol, Eric, 200000, Bob),
(Fran, Dan, 200000, Eric),

database2



(Bob, Alex, 100000, Alex),
(Dan, Fran, 150000, Carol),
(Alex, Bob, 100000, Root),
(Eric, Carol, 300000, Dan)]

database3 = [(Carol, Eric, 200000, Root),
(Fran, Dan, 200000, Root),
(Bob, Alex, 100000, Alex),
(Dan, Fran, 150000, Root),
(Alex, Bob, 100000, Root),
(Eric, Carol, 300000, Root)]

Enjoy the project!!



