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Abstract. We consider a network where users can issue certificates thatidentify
the public keys of other users in the network. The issued certificates in a network
constitute a set of certificate chains between users. A useru can obtain the public
key of other userv from a certificate chain fromu to v in the network. For the
certificate chain fromu to v, u is called the source of the chain andv is called
the destination of the chain. Certificates in each chain are dispersed between the
source and destination of the chain such that the following condition holds. If any
useru needs to securely send messages to any other userv in the network, thenu
can use the certificates stored inu andv to obtain the public key ofv (thenu can
use the public key ofv to set up a shared key withv to securely send messages
to v). The cost of dispersing certificates in a set of chains amongthe source and
destination users in a network is measured by the total number of certificates that
need to be stored in all users. A dispersal of a set of certificate chains in network
is optimal if no other dispersal of the same chain set has a strictly lower cost. In
this paper, we show that the problem of computing optimal dispersal of a given
chain set is NP-Complete. We also present three polynomial-time algorithms that
compute optimal dispersals for three special classes of chain sets.

1 Introduction

We consider a network where users would like to send messagessecurely to other users.
A user who would like to send a secure message is called asourceand a user who is
intended to receive such a message is called adestination.

In the Internet, it is common that one source may wish to send messages to many
destinations. For example, a source Alice may wish to send her credit card number
securely to several destination shopping sites, say Amazon.com, eBay.com, and price-
line.com. The secure communication between a source and a destination is protected
by encrypting each exchanged message with a shared key only known to the source and
destination.

In this network, each useru, whether source or destination, has a private keyrku

and a public keybku. In order for a sourceu to share a keysk with a destinationv, u
encrypts keyskusing the public keybkv of vand send the result, denotedbkv < u,v,sk>,
to v. Only v can decrypt this message and obtain keysk shared withu. This scenario
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necessitates thatu knows the public keybkv of v. In the above example, Alice needs to
know the public keys of Amazon, eBay, and priceline.

If a useru knows the public keybkv of another userv in the network, thenu can
issue a certificate, called a certificate fromu to v, that identifies the public keybkv of v.
This certificate can be used by any user that knows the public key ofu to further acquire
the public key ofv.

A certificate fromu to v is of the following form:

rku < u,v,bkv >

This certificate is signed using the private keyrku of u, and it includes three items: the
identity of the certificate issueru, the identity of the certificate subjectv, and the public
key of the certificate subjectbkv. Any user that knows the public keybku of u can use
bku to obtain the public keybkv of v from the certificate fromu to v. Note that when a
user obtains the public keybkv of userv from the certificate, the user not only finds out
whatbkv is, but also acquires the proof of the association thatbkv is indeed the public
key of userv.

The certificates issued by different users in a network can berepresented by a di-
rected graph, called thecertificate graphof the network. Each node in the certificate
graph represents a user in the network. Each directed edge from nodeu to nodev in the
certificate graph represents a certificate fromu to v in the network.

Fig. 1. A certificate graph of Alice and Bob

Fig. 1 shows a certificate graph for a network with two sources, Alice and Bob, and
six destinations, Amazon, eBay, priceline, Amex, Visa, andDiscover. According to this
graph,

Alice issues three certificates
(Alice, Amazon), (Alice, eBay), and (Alice, priceline), and

Bob issues three certificates
(Bob, Amex),(Bob, Visa), and (Bob, Discover)

A more efficient way to support secure communication betweenthe sources and
the destinations is to introduce some intermediaries between the sources and the desti-
nations. The number of introduced intermediaries is much smaller than the number of
sources and the number of destinations. Each intermediary has its own public and pri-
vate key pair. The sources know the public keys of intermediaries and the intermediaries
issue certificates of the public keys of the destinations. For example, two intermediaries,
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namely VeriSign and CertPlus, can be introduced between thetwo sources and the six
destinations in Fig. 1. The result is the certificate graph inFig. 2.

Fig. 2.A certificate graph with intermediaries

According to the certificate graph in Fig. 2, Alice needs to issue only one certificate
to VeriSign and Bob needs to issue only one certificate to CertPlus. Alice can then use
the two certificates (Alice, VeriSign) and(VeriSign,Amazon) to obtain the public key
bkAmazon, and so can securely send messages to Amazon. Also, Bob can use the two
certificates(Bob,CertPlus) and (CertPlus,Visa) to obtain the public keybkVisa, and
then can securely send messages to Visa.

Note that there is a certificate (VeriSign, Amex) in the certificate graph in Fig. 2 that
is not needed to support secure communication between any source and any destination
in Fig. 1. This redundancy is removed by specifying which “certificate chains” are being
used by the sources and destinations. Certificate chains aredefined as follows:

A simple path from a sourceu to a destinationv in a certificate graphG is called a
chainfrom u to v in G. u is thesourceof the chain andv is thedestinationof the chain.
For usersu andv in a certificate graphG, if u wishes to securely send messages tov,
then there must be a chain fromu to v in G. On the other hand, if there is a chain from
u to v, thenu does not necessarily wish to securely send messages tov. Fig. 3 shows six
chains that are needed to support the secure communicationsbetween the two sources
and the six destinations in Fig. 1. Since Alice does not need to securely communicate
with Amex, the certificate chain (Alice, VeriSign),(VeriSign, Amex) in the certificate
graph in Fig. 2 is not included in Fig. 3.

Fig. 3.Certificate chains from Fig. 2

The certificates in each chain need to be dispersed between the source and des-
tination of the chain such that if a sourceu wishes to securely send a message to a
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destinationv thenu can obtain the public key ofv from the set of certificates stored in
u andv. (Note that to “store a certificate in a user” does not necessarily mean that the
user has a local copy of the certificate. Rather, it means thatthe user only needs to know
where to find the certificate, if a need for that certificate arises, either in its local storage
or in a remote location.)

For example, assume that each source in Fig. 3 stores its certificate to the corre-
sponding intermediary, and that each destination in Fig. 3 stores the certificate from its
corresponding intermediary to itself. Thus,

Alice stores the certificate (Alice, VeriSign),
Bob stores the certificate (Bob, CertPlus),
Amazon stores the certificate (VeriSign, Amazon),
eBay stores the certificate (VeriSign, eBay),
priceline stores the certificate (VeriSign, priceline),
Amex stores the certificate (CertPlus, Amex),
Visa stores the certificate (CertPlus, Visa), and
Discover stores the certificate (CertPlus, Discover)

In this case, if Alice wishes to securely send messages to priceline, then Alice can
use the two certificates stored in Alice’s computer and priceline website to obtain the
public key of priceline and securely send the messages to priceline. Certificates that are
not part of any chain are not stored because they are not needed. This is illustrated by
the certificate (VeriSign, Amex), which appears in Fig. 2 but is not stored in Amex.

Dispersal of certificate chains and its cost are defined in Section 2. In Section 3,
we show that finding an optimal dispersal of any set of chains is NP-Complete. Then
we present three polynomial-time algorithms which computeoptimal dispersal of three
rich classes of chain sets.

2 Certificate Dispersal

A certificate graph Gis a directed graph in which each directed edge, called acertifi-
cate, is a pair (u, v), whereu andv are distinct nodes inG. For each certificate (u, v) in
G, u is called theissuerof the certificate andv is called thesubjectof the certificate.
Note that according to this definition no certificate has the same node as both its issuer
and subject.

A sequence of certificates (v0, v1), (v1, v2), · · · , (vk−1, vk) in a certificate graphG,
where the nodesv0, v1, · · · , vk are all distinct, is called achainfrom v0 to vk in G. Node
v0 is called thesourceof the chain and nodevk is called thedestinationof the chain. A
set of chains in a certificate graphG is called achain setof G.

A dispersal Dof a chain setCSassigns a set of certificates inCSto each source node
and each destination node inCSsuch that the following condition holds. The certificates
in each chain from a source nodeu to a destination nodev in CSare in the setD.u∪D.v,
whereD.u andD.v are the two sets of certificates assigned by dispersalD to nodesu
andv, respectively.
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Let D be a dispersal of a chain setCS. Thecostof dispersalD, denotedcost.D, is the
sum of cardinalities of the sets assigned by dispersalD to every source or destination
node inCS.

cost.D = ∑
v is a source or destination node inCS

|D.v|

A dispersalD of a chain setCS is optimal if and only if for any other dispersalD′

of the same chain setCS,
cost.D ≤ cost.D′

Let c be a certificate that appears in one or more chains in a chain set CS, and letD
be a dispersal ofCS. Thelocationof certificatec assigned byD, denotedD.c, is defined
as a set of all nodesv such thatc is in the set of certificatesD.v.

The locationD.c of a certificatec assigned by a dispersalD of a chain setCS is
optimal if and only if for any other dispersalD′ of CS, |D.c| ≤ |D′.c|.

Theorem 1. Let D be a dispersal of a chain set CS. If D is optimal, then for every
certificate c in CS the location D.c is optimal.

Proof. The proof is by contradiction. Assume thatD is optimal, and there exists another
dispersalD′ of CSand at least one certificatec in CSsuch that|D.c| > |D′.c|.

Let c be a certificate inCSsuch that|D.c| > |D′.c|. Now define a set of certificates
D′′.v for every nodev in CSas follows.

D′′.x :=

{

D′.x if x = c,

D.x if x 6= c

The setsD′′.v for every nodev in CSconstitute a dispersal,D′′, because each cer-
tificatec′ other thanc is assigned to the same nodes to whichc′ is also assigned byD
andc is assigned to the same nodes to whichc is assigned byD′. The cost of dispersal
D′′ is computed as follows.

cost.D′′ = ∑
v∈CS

|D′′.v| = ∑
c′∈CS,c′ 6=c

|D.c′|+ |D′.c|

By the assumption|D.c| > |D′.c|,

cost.D′′ = ∑
c′∈CS,c′ 6=c

|D.c′|+ |D′.c| < ∑
c′∈CS,c′ 6=c

|D.c′|+ |D.c|= cost.D

Thus, the cost of dispersalD′′ is less than the cost of dispersalD contradicting the
assumption thatD is an optimal dispersal.

Therefore, the locationD.c of c is optimal for every certificatec in CS. 2

Theorem 2. Let D be a dispersal of a chain set CS. If for every certificate cin CS the
location D.c is optimal, then D is an optimal dispersal of CS.
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Proof. The proof is by contradiction. LetD be a dispersal for a chain setCSand for
every certificatec in CSthe locationD.c is optimal. Also, letD′ be another dispersal of
CSwherecost.D′ < cost.D. By the definition of the cost of dispersal,

cost.D′ = ∑
c∈CS

|D′.c| < ∑
c∈CS

|D.c| = cost.D

Thus, there must be at least one certificatec in CSsuch that|D′.c|< |D.c|. This contra-
dicts the definition of an optimal location ofc.

Therefore,D is an optimal dispersal of the chain setCS. 2

3 NP-Completeness of optimal dispersal of chain sets

The problem of optimal dispersal of chain sets is to compute an optimal dispersal of
any given chain set.

Theorem 3. The problem of optimal dispersal of chain sets is NP-Complete.

Proof. The proof of NP-Completeness of an optimal dispersal of a given chain set con-
sists of two parts. First, we prove that there is a polynomialtime algorithm which ver-
ifies that an assignment of certificates to nodes is a dispersal. Second, we prove that a
well-known NP-Complete problem, the vertex cover problem,can be reduced in poly-
nomial time to an optimal dispersal of a chain set.

Proof of First Part:
Given a chain setCSand a setD.u for each nodeu in CS, we can verify whether

D is a dispersal in polynomial time. For each chain from a nodeu to a nodev in CS,
reconstruct the chain from the certificates inD.u andD.v. If all the chains in the chain
set can be reconstructed, then the given set ofD.u’s is a dispersal. The time complexity
of this verification algorithm isO(p×n), wherep is the number of chains in the chain
set andn is the length of the longest chain inCS.

Proof of Second Part:
Consider a vertex cover of a directed graphG=(V,E). A vertex cover ofG is a

subsetVC⊂V such that if(u,v)∈ E, thenu∈VCor v∈VC (or both). We show that an
algorithm for optimal dispersal can be used to compute a vertex cover of minimum size
of any given graphG=(V,E). We consider the set of nodesV ′ = V ∪{x,y}, and build,
for every edge(u,v) in E, a chain(u,x);(x,y);(y,v). This constitutes our chain setCS.

Let D be an optimal dispersal ofCS. By theorem 1, for every certificatec in CS, D.c
is optimal, includingc = (x,y). For every chain fromu to v in CS, D.u or D.v contains
(x,y) from the definition of dispersal. Therefore,u or v is in D.(x,y). For every edge
(u,v) in G, D.(x,y) containsu or v. Therefore,D.(x,y) is a vertex cover ofG.

We show thatD.(x,y) is a vertex cover of minimum size by contradiction. LetSbe
a vertex cover ofG where|S|< |D.(x,y)|. SinceS is a vertex cover ofG, for every edge
(u,v) in G, nodeu or nodev is in S. LetD′ be a dispersal where all certificates other than
(x,y) in CSremain in the same node as inD, and(x,y) stored in all the nodes inS. (D′

is a dispersal since for every chain from a nodeu to a nodev in CS, all the certificates
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in the chain are inD.u∪D.v.) Since we constructedD′ so that all other certificates than
(x,y) in the same nodes asD and(x,y) is stored in fewer nodes byD′ than byD,

cost.D′ = ∑
c′∈CS,c′ 6=c

|D.c′|+ |S|< ∑
c′∈CS,c′ 6=c

|D.c′|+ |D.c|= ∑
c∈CS

|D.c| = cost.D

This contradicts thatD is an optimal dispersal ofCS. Hence,D.(x,y) is a vertex cover
of G of minimum size.

Therefore, any vertex cover problem can be reduced to an optimal dispersal of an
edge in polynomial time and the optimal dispersal of the resulting chain set is equivalent
to a vertex cover of minimum size in the original vertex coverproblem.

An optimal dispersal problem is verifiable in polynomial time and any vertex cover
problem can be reduced to an optimal dispersal problem in polynomial time. If we can
find an optimal dispersal of an edge then we can find a vertex cover for any undirected
graph. Therefore, an optimal dispersal problem is NP-hard.Furthermore, The vertex
cover problem is a well known NP-Complete problem, so the optimal dispersal problem
is NP-Complete. 2

4 Optimal Dispersal of Short Chain Sets

In the previous section, we proved that computing an optimaldispersal of any chain set,
which includes chains whose length is 3 or more, is NP-Complete. In this section, we
show that there is a polynomial-time algorithm that computes an optimal dispersal of
any chain set whose chains are all of length 2 or less.

A chain setCSis short if and only if the length of the longest chain inCSis at most
2. For example, consider the star certificate graph in Fig. 4(a). In this certificate graph,
assume that each satellite node,b, c, or d, wishes to securely communicate with every
other satellite node. Fig. 4(b) shows the resulting short chain set.

a

d

b c

(a)

{ (b,a)(a,c),
(c,a)(a,b),
(b,a)(a,d),
(d,a)(a,b),
(c,a)(a,d),
(d,a)(a,c) }

(b)

Fig. 4. An Example of Short Chain Set

Consider a certificate(b,a) in the example short chain set. Chains that have(b,a)
are(b,a)(a,c) and(b,a)(a,d). Sob is the source of every chain that has(b,a). There-
fore, (b,a) is stored inD.b. After considering all the certificates in the short chain set,
the certificates are dispersed by Algorithm 1 as follows:
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ALGORITHM 1 : optimal dispersal of short chain sets

INPUT: a short chain setCS
OUTPUT: a dispersalD of CS

STEPS:
1: for each nodeu in CS, D.u := {}
2: for each certificate(u,v) in CSdo
3: if there is a nodex such that

the source or destination of every chain that has(u,v) is x
4: then D.x := D.x∪{(u,v)}
5: else D.u := D.u∪{(u,v)}, D.v := D.v∪{(u,v)}

{D.a = {}, D.b = {(a,b),(b,a)},
D.c = {(a,c),(c,a)}, D.d = {(a,d),(d,a)}}

Theorem 4. Given a short chain set CS, the dispersal D of CS computed by Algorithm
1 is optimal.

Proof. The proof consists of two parts. First, we show that Algorithm 1 computes a
dispersalD. Second, we show thatD is optimal.

Proof of First Part:
By the definition of dispersal in Section 2, if all the certificates in each chain from

a source nodeu to a destination nodev in CSare in setD.u∪D.v, thenD is a dispersal
of CS. In other words, if a certificate(u,v) is stored in the source or destination nodes
of every chain that contains(u,v), thenD is a dispersal.

By Algorithm 1, every certificate(u,v) is stored either inD.x of some nodex, or
both D.u andD.v. Since the maximum length of a chain inCS is 2, every chain that
contains(u,v) starts atu or ends atv. Hence if(u,v) is stored in bothD.u andD.v then
certificate(u,v) is stored in the source or destination node of every chain that contains
(u,v). If (u,v) is stored in nodex, by Algorithm 1 x is either the source node or the
destination node of every chain that contains(u,v). Therefore,(u,v) is stored in the
source or the destination node of every chain that contains(u,v).

Proof of Second Part:
The proof is by contradiction. LetD be the dispersal of a short chain setCScom-

puted by Algorithm 1 andD′ be another dispersal ofCS. Assume thatcost.D′ < cost.D.
There must be at least one certificatec such that|D′.c| < |D.c|.

Let (u,v) be such a certificate,|D′.(u,v)| < |D.(u,v)|. By Algorithm 1, |D.(u,v)| is
either 1 (if there exists some nodex that is the source or destination node of every chain
that has(u,v)) or 2 (otherwise). Therefore,|D′.(u,v)| = 1 and|D.(u,v)| = 2, and there
exists no nodex in CS that is the source or destination node of every chain that has
(u,v). By the definition of dispersal, the nodew in D′.(u,v) should be the source or a
destination of every chain that contains(u,v) in CS. This contradicts that there exists no
nodex in CSsuch thatx is the source or destination node of every chain that has(u,v).
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Therefore,cost.D ≤ cost.D′ for any dispersalD′ of CS. Algorithm 1 computes an
optimal dispersal of a short chain setCS. 2

The time complexity of Algorithm 1 isO(ep), wheree is the number of certificates
in the input short chain set andp is the number of chains in the chain set.

5 Optimal Dispersal of Disconnected Chain Sets

In this section, we present an algorithm which computes optimal dispersal for a class
of chain sets called disconnected chain sets. A chain setCSis disconnected if and only
if for every certificatec in CS, the set of source nodes of the chains that containc and
the set of destination nodes of the chains that containc are disjoint. Fig. 5 shows an
example of a disconnected chain set.

{ (d,a),
(a,b)(b,c),
(a,c)(c,d),
(a,b)(b,c)(c,d)(d,e)}

Fig. 5. An Example of Disconnected Chain Set

(d,a) has the set of source nodes{d} and the set of destination nodes{e}, which are
disjoint. (a,b) has the set of source nodes{a} and the set of destination nodes{c,e},
which are disjoint. Every certificate in this chain set has disjoint sets of source and
destination nodes.

Disconnected chain sets represent many useful certificate systems. No strongly-
connected certificate graph can produce a disconnected chain set if all possible chains
are used. For example, PGP’s web of trust[1] commonly results in a certificate graph
with a large strongly-connected component. If all the chains are used, it is NP-Complete
to compute an optimal dispersal for this strongly-connected component. In fact, not all
chains have to be used. As long as the subset of chains in use forms a disconnected
chain set, we can find an optimal dispersal in polynomial time.

Consider certificate(a,b) in the example disconnected chain set.G′ for (a,b) is
V ′={a,c,e} andE′={(a,c),(a,e)}. Therefore, the vertex cover of minimum size ofG′

is {a}. So(a,b) is stored inD.a. After considering all certificates in the chain set, the
example disconnected chain set is dispersed by Algorithm 2 as follows:

{D.a = {(a,b),(b,c),(c,d)}, D.b = {}, D.c = {},
D.d = {(a,c),(d,a)}, D.e= {(d,e)}}

Theorem 5. Given a disconnected chain set CS, the dispersal D of CS computed by
Algorithm 2 is optimal.

Proof. The proof consists of two parts. First, we show that Algorithm 2 produces a
dispersal. Second, we show that the resulting dispersal is optimal.
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ALGORITHM 2 : optimal dispersal of disconnected chain sets

INPUT: a disconnected chain setCS
OUTPUT: a dispersalD of CS

STEPS:
1: for each nodeu in G, D.u := {}
2: for each certificate(u,v) in G do
3: G′=(V ′,E′) whereV ′ = {} andE′ = {}
4: for each chain from nodex to nodey that contains(u,v) do
5: V ′:=V ′∪{x,y}
6: E′:=E′ ∪{(x,y)}
7: computea minimal vertex cover of the bipartite graphG′

8: add (u,v) to each node in the vertex cover

Proof of First Part:

LetD.u be the set of certificates assigned to a nodeu in CSby Algorithm 2. Consider
any certificate(u,v) in a chain from a source nodex to a destination nodey in CS. By
Algorithm 2, since there is a chain fromx to y that goes through(u,v), there is an edge
(x,y) in G′ for (u,v). By the definition of vertex cover, for edge(x,y) in G′, nodex or
nodey is in the vertex cover. Therefore, for the chain fromx to y, (u,v) is stored inD.x
or D.y. This is true for all the certificates in the chain fromx to y, for any chain inCS.
Hence,D satisfies the dispersal condition in Section 2, soD is a dispersal ofCS.

Proof of Second Part:

By Theorem 2, if we can find a dispersalD whereD.c of every certificatec in
CS is optimal, thenD is an optimal dispersal ofCS. So we only need to prove that a
dispersal computed by Algorithm 2 produces an optimal location of each certificate in
CS. The proof is by contradiction. Assume there is another dispersalD′ of CS, where
cost.D′ < cost.D. There must be at least one certificatec where |D′.c| < |D.c|. For
every chain from a nodex to a nodey that containsc, D′.c should containx or y.
Therefore,D′.c is a vertex cover of the bipartite graphG′ constructed forc, where
|D′.c| < |D.c|. This contradicts thatD.c is the vertex cover of minimum size ofG′ by
line 7 in Algorithm 2. Therefore,D.c is an optimal location ofc for every certificatec
in CS. By Theorem 2,D is optimal. 2

For each certificate(u,v), the graphG′ constructed for(u,v) is a bipartite graph.
It is because the set of source nodes of the chains that contain (u,v) and the set of
the destination nodes of the chains that contain(u,v) are disjoint by the definition of
disconnected chain set. Finding a vertex cover in a bipartite graph is a well known
problem in graph theory, which takesO(n′e′) steps wheren′ is the number on nodes in
G′ ande′ is the number of edges inG′. In the worst casen′ = n ande′ = p, wheren is
the number of nodes inCS, andp is the number of chains inCS. Therefore, the time
complexity of Algorithm 2 isO(e×np)=O(enp), wheree is the number of certificates
in CS.
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6 Optimal Dispersal of Concise Graphs

In this section, we present an algorithm which computes optimal dispersal for full chain
sets in concise certificate graphs. A chain set isfull if and only if it contains all chains
in a certificate graph. A certificate graphG is calledconciseif and only if it satisfies the
following two conditions.

i. Short Cycles: Every simple directed cycle inG is of length 2.
ii. Nonredundancy: G has at most one chain from any node to any other node.

Fig. 6 shows an example of a concise certificate graph. Note that in a concise graph
there can be two opposite direction certificates between twoadjacent nodes. We refer
to any such pair of certificates astwins, and we refer to each one of those certificates
as thetwin certificateof the other. Referring to the concise graph in Fig. 6 the two
certificates(a,c) and (c,a) are twins. This concept of twin certificates is utilized in
the following algorithm which computes optimal dispersal of full chain set of concise
certificate graphs.

a

c d

f

e

b

Fig. 6. A concise certificate graph

Concise certificate graphs represent many useful certificate systems. For example, a
hierarchical certificate system would typically generate atree-shaped certificate graph.
Any tree-shaped certificate graph is a concise certificate graph.

Consider certificate(a,c) in the example concise certificate graph in Fig. 6.R.a =
{a} andR.c = {b.c} so(a,c) is stored ina. After considering all the certificates in the
graph, the example concise certificate graph is dispersed byAlgorithm 3 as follows:

{ D.a = {(a,c),(c,a)}, D.b = {(c,b)}, D.c = {(d,c)},
D.d = {}, D.e= {(e,d)}, D. f = {(d, f ),( f ,d)} }

Theorem 6. Given a concise certificate graph G, the dispersal D of the full chain set
CS of G computed by Algorithm 3 is optimal.

Proof. We divide the proof into two parts. First, we show that Algorithm 3 computes a
dispersalD. Second, we show thatD is optimal.

Proof of First Part:
We show that the certificate subsetsD.x, computed by Algorithm 3 for every node

x in G, satisfy the condition of dispersal in Section 2.
Consider a pair of nodesv0 andvk, where there is a chain (v0, v1), (v1, v2), · · · , (vk−1,

vk) from v0 to vk in G. By the definition of full chain set, chain fromv0 to vk is in CS.
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ALGORITHM 3 : optimal dispersal of concise certificate graphs

INPUT: a concise certificate graphG
OUTPUT: a dispersalD of the full chain setCSof G

STEPS:
1: for each nodeu in G, D.u := {}
2: for each certificate(u,v) in G do
3: computethe setR.u that containsu and every nodex from which there is a chain tou in G

and this chain does not contain the twin certificate(v,u)
4: computethe setR.v that containsv and every nodex to which there is a chain fromv in G

and this chain does not contain the twin certificate(v,u)
5: if |R.u| ≤ |R.v|
6: then for every nodex in R.u, D.x := D.x∪{(u,v)}
7: elsefor every nodex in R.v, D.x := D.x∪{(u,v)}

For each certificate(vi ,vi+1) in this chain, the two setsR.vi andR.vi+1 are computed by
Algorithm 3. Since there is a chain fromv0 to vi in G, R.vi containsv0. Similarly, since
there is a simple directed chain fromvi+1 to vk in G, R.vi+1 containsvk. By line 5-7
in Algorithm 3, (vi ,vi+1) is stored either in all nodes inR.vi or in all nodes inR.vi+1.
BecauseR.vi containsv0 andR.vi+1 containsvk, certificate(vi ,vi+1) is stored either in
D.v0 or in D.vk. Thus, every certificate(vi ,vi+1) in the chain fromv0 to vk is stored in
D.v0∪D.vk. Hence,D is a dispersal of the full chain setCSof G.

Proof of Second Part:
LetD′ be another dispersal ofCSand(u,v) be any certificate inCS. By the definition

of full chain set, if Algorithm 3 is applied toG, then certificate(u,v) is on every directed
chain from a node inR.u to a node inR.v in CS, whereR.u andR.v are the two sets
computed by Algorithm 3 for certificate(u,v). Therefore,D′.(u,v) is a superset ofR.u
andR.v, so|D′.(u,v)| ≥ |R.u∪R.v| ≥ min(|R.u|, |R.v|) = |D.(u,v)|. This is true for any
certificate(u,v) in CS, thuscost.D′ is no less thancost.D. Therefore,D computed by
Algorithm 3 is optimal. 2

The complexity of Algorithm 3 isO(en), wheree is the number of certificates in the
input concise certificate graph andn is the number of nodes in the concise certificate
graph.

7 Related Work

Several papers have investigated the use of certificates forconfidentiality, authentica-
tion, and authorization. We summarize the results of these papers in the following para-
graphs.

Architectures for issuing, storing, discovery, and validating certificates in networks
are presented in [2], [3], [4], [5], [6], [7], [8], [9], and [10]. In a large scale network
such as today’s Internet, one cannot expect to have a centralauthority to issue, store,
and validate all the certificates. A distributed system, where each user participates in
issuing, storing, and validating certificates is desirablein such a network.
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In [11] and [12], distributed architectures for issuing certificates, particularly in mo-
bile networks, are presented.

In [11], Zhou and Haas present an architecture for issuing certificates in an ad-hoc
network. According to this architecture, the network hask servers. Each server has a
different share of some private keyrk. To generate a certificate, each server uses its
own share ofrk to encrypt the certificate. If no more thant servers have suffered from
Byzantine failures, wherek ≥ 3t + 1, then the resulting certificate is correctly signed
using the private keyrk, thanks to threshold cryptography. The resulting certificate can
be decrypted using the corresponding public key which is known to every node in the
ad-hoc network.

In [12], Kong, Perfos, Luo, Lu and Zhang presented another distributed architecture
for issuing certificates. Instead of employingk servers in the ad-hoc network, each node
in the network is provided with a different share of the private keyrk. For a nodeu to
issue a certificate, the nodeu forwards the certificate to its neighbors and each of them
encrypt the certificate using its share ofrk. If nodeu has at leastt +1 correct neighbors
(i.e. they have not suffered from any failures), the resulting certificate is correctly signed
using the private keyrk.

Both work assume that a certificate will be signed by a specialprivate key of an
authority, and distribute the private key among many servers or users. By contrast, in
[13] and this paper, we propose a distributed architecture where every node has both a
public key and a private key so it can issue certificates for any other node in the network.
This architecture is very efficient in issuing and validating certificates but cannot tol-
erate Byzantine failures. In particular, if one node suffers from Byzantine failure, then
this node can successfully impersonate any other node that is reachable from this node
in the certificate graph of the network. This vulnerability to Byzantine failures is not
unique to our certificate work. In fact, many proposed certificate architectures, e.g. [2],
[3], while [12] , [4], [10], and [9] yield similar vulnerabilities. Recently, we have identi-
fied a metric to evaluate the damage from this type of attacks.We call it “vulnerability”
of the certificate system and discuss it in more details in [14].

In [10], Li, Winsborough, and Mitchell presented a role-based trust management
languageRT0 and suggested the use of strongly typed distributed certificate storage to
solve the problem of certificate chain discovery in distributed storage. However, they do
not discuss how to efficiently assign certificates among the distributed storages. By con-
trast, our work focuses on minimizing storage overhead in certificate dispersal among
the users while they have enough certificates so that there isno need for certificate chain
discovery.

In [15], Ajmani, Clarke, Moh, and Richman presented a distributed certificate stor-
age using peer-to-peer distributed hash table. This work assumes dedicated servers host
a SDSI certificate directory and focuses on fast look-up service and load balancing
among the servers. By contrast, our work assigns certificates to users such that there
is no need for look-up and there are no dedicated certificate storage servers. Our work
also focuses on efficient use of storages in all users in network.

In [16], Reiter and Stubblebine investigate how to increaseassurance on authenti-
cation with multiple independent certificate chains. They introduce two types of inde-
pendent chains, disjoint paths (no edge is shared by any two chains) and k-connective
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paths (k certificates need to be compromised to disconnect all these paths). This paper
shows that there are no polynomial-time algorithms for locating maximum sets of paths
with these properties and presents approximation algorithms.

Perhaps the closest work to ours is [17] where the authors, Hubaux, Buttyán, and
Capkun, investigated how to disperse certificates in a certificate graph among the net-
work nodes under two conditions. First, each node stores thesame number of certifi-
cates. Second, with high probability, if two nodes meet thenthey have enough certifi-
cates for each of them to obtain the public key of the other. Bycontrast, our work in [13]
and here are based on two different conditions. First, different nodes may store differ-
ent number of certificates, but the number of certificates stored in nodes is minimized.
Second, it is guaranteed (i.e. with probability 1) that if two nodes meet then they have
enough certificates for each of them to obtain the public key of the other (if there exists
a chain between them in the chain set).

Later, the same authors have showed in [18] that a lower boundon the number of
certificates to be stored in a node is

√
n−1 wheren is the number of nodes in the system.

By contrast, we showed in [13] that the tight lower bound on the average number of
certificates to be stored in a node ise/n, wheree is the number of certificates in the
system. Our work here shows that finding an optimal dispersalof a given chain set is
NP-Complete, and presents three polynomial-time algorithms which compute optimal
dispersal of three classes of chain sets.

8 Conclusion

We have shown that, in general, finding an optimal dispersal of a given chain set is NP-
Complete. We have also discussed three polynomial-time algorithms, each of which
computes an optimal dispersal for a rich class of chain sets.In [19], we have presented
more polynomial-time algorithms which compute an optimal dispersal for more classes
of chain sets. This result can be used in any network setting.However, these algorithms
are particularly useful when the network is large. In a largescale network such as to-
day’s Internet, one cannot expect to have a central authority for storing and distributing
certificates among all users in the network. Instead, users can store a subset of certifi-
cates in the network so that any user can obtain the public keyof the other whom the
user wants to securely communicate with (if there was a chainin the chain set). More-
over, in a large scale network, not all certificate chains in acertificate graph are in use.
Computing an optimal dispersal of a chain set instead of the full chain set of a certificate
graph reduces the cost of dispersal.

This result can be also used as a metric to evaluate certificate graphs. The optimal
dispersal cost is an important property of a certificate graph, since it affects the stor-
age requirement of each node in the network. This is especially important in ad-hoc
networks, where mobile nodes may be more restricted in termsof storage than stable
nodes can be.
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