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Abstract. We consider a network where users can issue certificatesldmatfy
the public keys of other users in the network. The issuedficates in a network
constitute a set of certificate chains between users. Awsan obtain the public
key of other usewr from a certificate chain fronn to v in the network. For the
certificate chain fronu to v, u is called the source of the chain amds called
the destination of the chain. Certificates in each chain msedsed between the
source and destination of the chain such that the followarglition holds. If any
useru needs to securely send messages to any othewurséine network, them
can use the certificates storeduandv to obtain the public key of (thenu can
use the public key o¥ to set up a shared key withto securely send messages
to v). The cost of dispersing certificates in a set of chains antbaegource and
destination users in a network is measured by the total nuofleertificates that
need to be stored in all users. A dispersal of a set of cettéficlaains in network
is optimal if no other dispersal of the same chain set hasalgtiower cost. In
this paper, we show that the problem of computing optimagbetisal of a given
chain set is NP-Complete. We also present three polynaimial-algorithms that
compute optimal dispersals for three special classes af cls.

1 Introduction

We consider a network where users would like to send messagasely to other users.
A user who would like to send a secure message is callBalieceand a user who is
intended to receive such a message is callddstination

In the Internet, it is common that one source may wish to seeslsages to many
destinations. For example, a source Alice may wish to semcteglit card number
securely to several destination shopping sites, say Ameanom eBay.com, and price-
line.com. The secure communication between a source andtimatéon is protected
by encrypting each exchanged message with a shared keymalynkto the source and
destination.

In this network, each user, whether source or destination, has a private gy
and a public keyok,. In order for a source to share a kegk with a destinatiorv, u
encrypts keykusing the public kepk, of vand send the result, denoteld < u, v, sk>,
to v. Only v can decrypt this message and obtain kkghared withu. This scenario



necessitates thatknows the public keyk, of v. In the above example, Alice needs to
know the public keys of Amazon, eBay, and priceline.

If a useru knows the public keyk, of another usev in the network, themu can
issue a certificate, called a certificate frorto v, that identifies the public kelyk, of v.
This certificate can be used by any user that knows the pukjioku to further acquire
the public key ofv.

A certificate fromu to v is of the following form:

rky < u,v, bk, >

This certificate is signed using the private k&y of u, and it includes three items: the
identity of the certificate issuer, the identity of the certificate subjegtand the public
key of the certificate subjetik,. Any user that knows the public kdésk, of u can use
bk, to obtain the public keyk, of v from the certificate fronu to v. Note that when a
user obtains the public kdyk, of userv from the certificate, the user not only finds out
whatbk, is, but also acquires the proof of the association khais indeed the public
key of usew.

The certificates issued by different users in a network carepeesented by a di-
rected graph, called theertificate graphof the network. Each node in the certificate
graph represents a user in the network. Each directed eoigaiodeu to nodev in the
certificate graph represents a certificate foto v in the network.
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Fig. 1. A certificate graph of Alice and Bob

Fig. 1 shows a certificate graph for a network with two sourééise and Bob, and
six destinations, Amazon, eBay, priceline, Amex, Visa, Bigtover. According to this
graph,

Alice issues three certificates

(Alice, Amazo, (Alice, eBay, and @lice, priceline), and
Bob issues three certificates

(Bob, Amey, (Boh, Visa), and Bob, Discove)

A more efficient way to support secure communication betweensources and
the destinations is to introduce some intermediaries betwiee sources and the desti-
nations. The number of introduced intermediaries is mucallemthan the number of
sources and the number of destinations. Each intermedésytdrown public and pri-
vate key pair. The sources know the public keys of intermestiand the intermediaries
issue certificates of the public keys of the destinationsekample, two intermediaries,



namely VeriSign and CertPlus, can be introduced betweetwtheources and the six
destinations in Fig. 1. The result is the certificate grapfig 2.

Fig. 2. A certificate graph with intermediaries

According to the certificate graph in Fig. 2, Alice needs su&sonly one certificate
to VeriSign and Bob needs to issue only one certificate toRDest Alice can then use
the two certificatesAlice, VeriSign and (VeriSign Amazon to obtain the public key
bkamazon @and so can securely send messages to Amazon. Also, Bob eahaisvo
certificates(Boh CertPlug and (CertPlusVisa) to obtain the public keykyisa, and
then can securely send messages to Visa.

Note that there is a certificate€riSign Amey in the certificate graph in Fig. 2 that
is not needed to support secure communication between angesand any destination
in Fig. 1. This redundancy is removed by specifying whichrtifieate chains” are being
used by the sources and destinations. Certificate chairtefined as follows:

A simple path from a sourceto a destinatiowv in a certificate grapks is called a
chainfromutovin G. uis thesourceof the chain and is thedestinatiorof the chain.
For userau andv in a certificate grapie, if u wishes to securely send messages, to
then there must be a chain framto vin G. On the other hand, if there is a chain from
utov, thenu does not necessarily wish to securely send messageFi. 3 shows six
chains that are needed to support the secure communicagétnesen the two sources
and the six destinations in Fig. 1. Since Alice does not neextturely communicate
with Amex, the certificate chainAfice, VeriSign,(VeriSign Amey in the certificate
graphin Fig. 2 is not included in Fig. 3.

ssewan:

Fig. 3. Certificate chains from Fig. 2

The certificates in each chain need to be dispersed betweesotirce and des-
tination of the chain such that if a souraewishes to securely send a message to a



destinationv thenu can obtain the public key of from the set of certificates stored in
u andv. (Note that to “store a certificate in a user” does not necégsaean that the
user has a local copy of the certificate. Rather, it meanghkatser only needs to know
where to find the certificate, if a need for that certificateesj either in its local storage
or in a remote location.)

For example, assume that each source in Fig. 3 stores iificzeet to the corre-
sponding intermediary, and that each destination in Figoi®s the certificate from its
corresponding intermediary to itself. Thus,

Alice  stores the certificaté){ice, VeriSigr),
Bob stores the certificat®06h, CertPlug,
Amazon stores the certificatédriSign Amazoi,
eBay  stores the certificat¢ériSign eBay),
priceline stores the certificateériSign priceline),
Amex  stores the certificat€értPlus Amey,
Visa stores the certificat€értPlus Visa), and
Discover stores the certificat€¢rtPlus Discovel)

In this case, if Alice wishes to securely send messages telpré, then Alice can
use the two certificates stored in Alice’s computer and fineevebsite to obtain the
public key of priceline and securely send the messagesdelpré. Certificates that are
not part of any chain are not stored because they are not che€llis is illustrated by
the certificate\eriSign Amey, which appears in Fig. 2 but is not stored in Amex.

Dispersal of certificate chains and its cost are defined iti@eg. In Section 3,
we show that finding an optimal dispersal of any set of chairn$®R-Complete. Then
we present three polynomial-time algorithms which comptgmal dispersal of three
rich classes of chain sets.

2 Certificate Dispersal

A certificate graph Gs a directed graph in which each directed edge, calledrtfi-
cate is a pair (1, v), whereu andv are distinct nodes i. For each certificateu( v) in

G, u is called theissuerof the certificate and is called thesubjectof the certificate.
Note that according to this definition no certificate has tmaes node as both its issuer
and subject.

A sequence of certificatesy, v1), (v1, V2), ---, (\k_1, V) in a certificate grapis,
where the nodeg, v1, - - -, Vk are all distinct, is called ahainfrom vy to v in G. Node
Vg is called thesourceof the chain and node is called thedestinationof the chain. A
set of chains in a certificate graghis called achain setof G.

A dispersal Dof a chain se€Sassigns a set of certificates@®to each source node
and each destination node@$such that the following condition holds. The certificates
in each chain from a source nodéo a destination nodein CSare in the seD.uuD.v,
whereD.u andD.v are the two sets of certificates assigned by dispé&sal nodesu
andv, respectively.



LetD be a dispersal of a chain $88 Thecostof dispersab, denoteatostD, is the
sum of cardinalities of the sets assigned by dispdbstd every source or destination
node inCS

costD = ; |D.v|
vis a source or destination noded$

A dispersalD of a chain se€CSis optimalif and only if for any other dispersa’
of the same chain s&S
costD < costD’

Let c be a certificate that appears in one or more chains in a chia@Ssand letD
be a dispersal &S Thelocationof certificatec assigned by, denoted.c, is defined
as a set of all nodessuch that is in the set of certificated.v.

The locationD.c of a certificatec assigned by a dispersBl of a chain seCSis
optimalif and only if for any other dispers&’ of CS |D.c| < |D'.c|.

Theorem 1. Let D be a dispersal of a chain set CS. If D is optimal, then fogre
certificate ¢ in CS the location.Dis optimal.

Proof. The proofis by contradiction. Assume thats optimal, and there exists another
dispersaD’ of CSand at least one certificatén CSsuch tha{D.c| > |D’.c|.

Let c be a certificate i€ Ssuch thaiD.c| > |D’.c|. Now define a set of certificates
D”.v for every noder in CSas follows.

D x— D’ x ifx:c,
Dx ifx#c

The setd”.v for every nodev in CSconstitute a dispersdl)”, because each cer-
tificate ¢’ other tharc is assigned to the same nodes to whitls also assigned by
andc is assigned to the same nodes to whids assigned b’. The cost of dispersal
D" is computed as follows.

costD” = Z D".vj= Y |D.c|+|Dc]
veCS ceCSc#c

By the assumptiofD.c| > |D'.c|,

costD’= % [D.c|+[D'cf< ) |D.c|+[D.c|]=costD
deCSc'#c ceCSc#c

Thus, the cost of dispers@l” is less than the cost of disperdalcontradicting the
assumption tha is an optimal dispersal.
Therefore, the locatioB.c of ¢ is optimal for every certificatein CS m]

Theorem 2. Let D be a dispersal of a chain set CS. If for every certificai@ €S the
location D.c is optimal, then D is an optimal dispersal of CS.



Proof. The proof is by contradiction. LdD be a dispersal for a chain Sg6and for
every certificates in CSthe locationD.c is optimal. Also, letD’ be another dispersal of
CSwherecostD’ < costD. By the definition of the cost of dispersal,

costD’ = Z |D'.c| < Z |D.c| = costD
ceCS ceCS

Thus, there must be at least one certificaite CSsuch tha{D’.c| < |D.c|. This contra-
dicts the definition of an optimal location of
ThereforeD is an optimal dispersal of the chain €5 m|

3 NP-Completeness of optimal dispersal of chain sets

The problem of optimal dispersal of chain sets is to compuategimal dispersal of
any given chain set.

Theorem 3. The problem of optimal dispersal of chain sets is NP-Comaplet

Proof. The proof of NP-Completeness of an optimal dispersal of argahain set con-
sists of two parts. First, we prove that there is a polynotimiad algorithm which ver-
ifies that an assignment of certificates to nodes is a digp&wseond, we prove that a
well-known NP-Complete problem, the vertex cover problean be reduced in poly-
nomial time to an optimal dispersal of a chain set.

Proof of First Part

Given a chain se€Sand a seD.u for each nodei in CS we can verify whether
D is a dispersal in polynomial time. For each chain from a node a nodev in CS
reconstruct the chain from the certificatesiru andD.v. If all the chains in the chain
set can be reconstructed, then the given sét.ok is a dispersal. The time complexity
of this verification algorithm i©(p x n), wherep is the number of chains in the chain
set anch is the length of the longest chain@s

Proof of Second Part

Consider a vertex cover of a directed graph(V,E). A vertex cover ofG is a
subseW C C V such thatif(u,v) € E, thenue VCorv e VC (or both). We show that an
algorithm for optimal dispersal can be used to compute &xedver of minimum size
of any given graplG=(V,E). We consider the set of nod¥$ =V U {x,y}, and build,
for every edgéu,v) in E, a chain(u, x); (x,y); (y,Vv). This constitutes our chain S8&

Let D be an optimal dispersal €S By theorem 1, for every certificaten CS D.c
is optimal, includingc = (x,y). For every chain fromu to vin CS D.u or D.v contains
(x,y) from the definition of dispersal. Therefoneor v is in D.(x,y). For every edge
(u,v) in G, D.(x,y) containau or v. ThereforeD.(x,y) is a vertex cover of.

We show thaD.(x,y) is a vertex cover of minimum size by contradiction. ISdte
a vertex cover o6 where|S < |D.(x,y)|. SinceSis a vertex cover o6, for every edge
(u,v) in G, nodeu or nodevis in S. LetD’ be a dispersal where all certificates other than
(%,y) in CSremain in the same node asin and(x,y) stored in all the nodes i8. (D’
is a dispersal since for every chain from a nade a nodev in CS all the certificates



in the chain are iD.uuUD.v.) Since we constructed’ so that all other certificates than
(x,y) in the same nodes &and(x,y) is stored in fewer nodes iy than byD,

costD'= % [Dcl+[f< 5 [D.C|+|D.c/]= 3 |D.c/=costD
deCSc #c deCSc#c ceCS

This contradicts thab is an optimal dispersal &S HenceD.(x,y) is a vertex cover
of G of minimum size.

Therefore, any vertex cover problem can be reduced to amaptlispersal of an
edge in polynomial time and the optimal dispersal of theltggpuchain set is equivalent
to a vertex cover of minimum size in the original vertex copsblem.

An optimal dispersal problem is verifiable in polynomial &rand any vertex cover
problem can be reduced to an optimal dispersal problem ynpohial time. If we can
find an optimal dispersal of an edge then we can find a vertegrdov any undirected
graph. Therefore, an optimal dispersal problem is NP-hamdthermore, The vertex
cover problem is a well known NP-Complete problem, so thenwgdtdispersal problem
is NP-Complete. a

4 Optimal Dispersal of Short Chain Sets

In the previous section, we proved that computing an optéisglersal of any chain set,
which includes chains whose length is 3 or more, is NP-Cotapla this section, we
show that there is a polynomial-time algorithm that compwe optimal dispersal of
any chain set whose chains are all of length 2 or less.

A chain setCSis shortif and only if the length of the longest chain@tis at most
2. For example, consider the star certificate graph in Fig). 44 this certificate graph,
assume that each satellite nobgeg, or d, wishes to securely communicate with every
other satellite node. Fig. 4(b) shows the resulting shaatrchet.

e
c,a)(a,b),
%[e%/p (b,a)(a,d),
(d,a)(a,b),

& (c,a)(a,d),
(d,a)(ac) }

(@) (b)

Fig. 4. An Example of Short Chain Set

Consider a certificatéb,a) in the example short chain set. Chains that hidve)
are(b,a)(a,c) and(b,a)(a,d). Sob s the source of every chain that hdsa). There-
fore, (b,a) is stored inD.b. After considering all the certificates in the short chaip se
the certificates are dispersed by Algorithm 1 as follows:



ALGORITHM 1 : optimal dispersal of short chain sets

INPUT: a short chain s&2S
OUTPUT: a dispersdD of CS

STEPS:
1: for each nodeiinCS D.u:={}
2: for each certificat¢u,v) in CSdo
3: if there is a node such that
the source or destination of every chain that fas) is x
4: thenD.x:=D.xU{(u,v)}
5: else D.u:=D.uu{(u,v)}, D.v:i=D.vU{(u,v)}

{D.a={},D.b={(a,b),(b,a)},
D.c={(a,c),(c,a)}, D.d={(ad),(d,a)}}

Theorem 4. Given a short chain set CS, the dispersal D of CS computeddnyrifim

1is optimal.

Proof. The proof consists of two parts. First, we show that Alganith computes a
dispersaD. Second, we show thét is optimal.

Proof of First Part

By the definition of dispersal in Section 2, if all the certifies in each chain from
a source noda to a destination nodein CSare in seD.uUD.v, thenD is a dispersal
of CS In other words, if a certificatéu,v) is stored in the source or destination nodes
of every chain that contair{sl, v), thenD is a dispersal.

By Algorithm 1, every certificatéu,v) is stored either irD.x of some node, or
both D.u andD.v. Since the maximum length of a chain@Sis 2, every chain that
contains(u, V) starts au or ends av. Hence if(u, V) is stored in bottD.u andD.v then
certificate(u, V) is stored in the source or destination node of every chaincthretains
(u,v). If (u,v) is stored in node, by Algorithm 1x is either the source node or the
destination node of every chain that contafosv). Therefore,(u,v) is stored in the
source or the destination node of every chain that containg.

Proof of Second Part

The proof is by contradiction. Ldd be the dispersal of a short chain &% com-
puted by Algorithm 1 an®’ be another dispersal &fS Assume thatostD’ < costD.
There must be at least one certificatsuch thatD’.c| < |D.c|.

Let (u,v) be such a certificatéD’.(u,v)| < |D.(u,v)|. By Algorithm 1,|D.(u,v)| is
either 1 (if there exists some nor¢hat is the source or destination node of every chain
that hagu,v)) or 2 (otherwise). Therefor¢d)’.(u,v)| = 1 and|D.(u,v)| = 2, and there
exists no node in CSthat is the source or destination node of every chain that has
(u,v). By the definition of dispersal, the nogein D’.(u,v) should be the source or a
destination of every chain that contaifsv) in CS This contradicts that there exists no
nodex in CSsuch thak is the source or destination node of every chain that{basg.



ThereforecostD < costD’ for any dispersaD’ of CS Algorithm 1 computes an
optimal dispersal of a short chain &8 O

The time complexity of Algorithm 1 i©(ep), whereeis the number of certificates
in the input short chain set anmiis the number of chains in the chain set.

5 Optimal Dispersal of Disconnected Chain Sets

In this section, we present an algorithm which computeswmgdtdispersal for a class
of chain sets called disconnected chain sets. A chai@S&t disconnected if and only
if for every certificatec in CS the set of source nodes of the chains that cortaind
the set of destination nodes of the chains that cortaire disjoint. Fig. 5 shows an
example of a disconnected chain set.

Fig. 5. An Example of Disconnected Chain Set

(d,a) has the set of source nodis} and the set of destination nodgs}, which are
disjoint. (a,b) has the set of source nodgs} and the set of destination nodgs e},
which are disjoint. Every certificate in this chain set hagadint sets of source and
destination nodes.

Disconnected chain sets represent many useful certifigagteras. No strongly-
connected certificate graph can produce a disconnected ségif all possible chains
are used. For example, PGP’s web of trust[1] commonly result certificate graph
with a large strongly-connected component. If all the chaire used, itis NP-Complete
to compute an optimal dispersal for this strongly-conngctamponent. In fact, not all
chains have to be used. As long as the subset of chains in ues fBbdisconnected
chain set, we can find an optimal dispersal in polynomial time

Consider certificatéa, b) in the example disconnected chain g8t.for (a,b) is
V'={a,c,e} andE’'={(a,c), (a,e)}. Therefore, the vertex cover of minimum size@f
is {a}. So(a,b) is stored inD.a. After considering all certificates in the chain set, the
example disconnected chain set is dispersed by Algorithefallws:

{D.a={(a,b),(b,c),(c,d)},D.b={},D.c={},
D.d={(a,c),(d,a)},D.e={(d,e)}}

Theorem 5. Given a disconnected chain set CS, the dispersal D of CS dechjy
Algorithm 2 is optimal.

Proof. The proof consists of two parts. First, we show that AlgaritB produces a
dispersal. Second, we show that the resulting dispersatisal.
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ALGORITHM 2 : optimal dispersal of disconnected chain sets

INPUT: a disconnected chain 886
OUTPUT: a dispersdD of CS

STEPS:
1: for each nodesin G, D.u:= {}
2: for each certificat¢u,v) in G do

computea minimal vertex cover of the bipartite gra@h
add (u,v) to each node in the vertex cover

3: G'=(V',E') whereV' = {} andE’' = {}

4: for each chain from nodeto nodey that containgu,v) do
5: V=V u{xy}

6: E=E' U{(xy)}

7

8:

Proof of First Part:

LetD.ube the set of certificates assigned to a n@ileC Sby Algorithm 2. Consider
any certificatg(u,v) in a chain from a source nodgo a destination nodgin CS By
Algorithm 2, since there is a chain froxto y that goes througfu, v), there is an edge
(x,y) in G’ for (u,v). By the definition of vertex cover, for eddg,y) in G', nodex or
nodey is in the vertex cover. Therefore, for the chain frano y, (u,v) is stored inD.x
or D.y. This is true for all the certificates in the chain frorto y, for any chain inCS
Hence D satisfies the dispersal condition in Section 2Dsis a dispersal o€S

Proof of Second Part:

By Theorem 2, if we can find a dispers2l whereD.c of every certificatec in
CSis optimal, therD is an optimal dispersal &S So we only need to prove that a
dispersal computed by Algorithm 2 produces an optimal locadf each certificate in
CS The proof is by contradiction. Assume there is anotheratisaD’ of CS where
costD’ < costD. There must be at least one certificatevhere |D’.c| < |D.c|. For
every chain from a nod& to a nodey that contains, D’.c should containx or y.
Therefore,D’.c is a vertex cover of the bipartite grafs{ constructed forc, where
|D'.c| < |D.c]. This contradicts thaD.c is the vertex cover of minimum size &' by
line 7 in Algorithm 2. ThereforeD.c is an optimal location o€ for every certificates
in CS By Theorem 2D is optimal. ]

For each certificatéu,v), the graphG’ constructed fo(u,v) is a bipartite graph.
It is because the set of source nodes of the chains that ndutai) and the set of
the destination nodes of the chains that contaiw) are disjoint by the definition of
disconnected chain set. Finding a vertex cover in a bigagiaph is a well known
problem in graph theory, which tak€§n’'e’) steps wher@' is the number on nodes in
G’ and€ is the number of edges i&'. In the worst case’ = n and€ = p, wheren is
the number of nodes iI6S andp is the number of chains i@S Therefore, the time
complexity of Algorithm 2 isO(e x np)=0(enp), whereeis the number of certificates
inCS
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6 Optimal Dispersal of Concise Graphs

In this section, we present an algorithm which computeswgitdispersal for full chain
sets in concise certificate graphs. A chain sétliksif and only if it contains all chains
in a certificate graph. A certificate gra@hs calledconcisef and only if it satisfies the
following two conditions.

i. Short Cycles Every simple directed cycle i@ is of length 2.
ii. NonredundancyG has at most one chain from any node to any other node.

Fig. 6 shows an example of a concise certificate graph. Naterita concise graph
there can be two opposite direction certificates betweenaitjacent nodes. We refer
to any such pair of certificates &sins and we refer to each one of those certificates
as thetwin certificateof the other. Referring to the concise graph in Fig. 6 the two
certificates(a,c) and (c,a) are twins. This concept of twin certificates is utilized in
the following algorithm which computes optimal dispersifudl chain set of concise
certificate graphs.

o, P
Dol

(b ®

Fig. 6. A concise certificate graph

Concise certificate graphs represent many useful ceréfgystems. For example, a
hierarchical certificate system would typically generateea-shaped certificate graph.
Any tree-shaped certificate graph is a concise certificatphyr

Consider certificatéa, c) in the example concise certificate graph in FigRG =
{a} andR.c = {b.c} so(a,c) is stored ina. After considering all the certificates in the
graph, the example concise certificate graph is disperséddoyithm 3 as follows:

{D.a={(ac),(c,a)},D.b={(c,b)},D.c={(d,c)},
D.d={},D.e={(ed)},D.f ={(d,f),(f,d)} }

Theorem 6. Given a concise certificate graph G, the dispersal D of thediuin set
CS of G computed by Algorithm 3 is optimal.

Proof. We divide the proof into two parts. First, we show that Algem 3 computes a
dispersaD. Second, we show thét is optimal.

Proof of First Part:

We show that the certificate subs€tsx, computed by Algorithm 3 for every node
X in G, satisfy the condition of dispersal in Section 2.

Consider a pair of nodeg andvy, where there is a chaing, v1), (V1, V2), - - -, (Vk_1,
vk) from vp to v in G. By the definition of full chain set, chain fromg to vk is inCS
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ALGORITHM 3 : optimal dispersal of concise certificate graphs

INPUT: a concise certificate grajgh
OUTPUT: a dispersdD of the full chain se€CSof G

STEPS:

1: for each nodes in G, D.u:= {}

2: for each certificat¢u,v) in G do

3: computethe setR.u that containai and every node from which there is a chain toin G
and this chain does not contain the twin certificate)

4: computethe seRv that containy and every noda& to which there is a chain fromin G
and this chain does not contain the twin certificate)

5. if |Ru| < |Ry]|

6: then for every nodexin Ru, D.x:=D.xU{(u,v)}

7: elsefor every nodecin R.v, D.x:=D.xU{(u,v)}

For each certificatév;, vi11) in this chain, the two seR.v; andR v;;1 are computed by
Algorithm 3. Since there is a chain frow to v; in G, Rv; containsvg. Similarly, since
there is a simple directed chain from.1 to v in G, Rvi;1 containsy. By line 5-7
in Algorithm 3, (vi,vi+1) is stored either in all nodes R.v; or in all nodes inR.vi1.
BecauseR.v; containsvp andR.vi 1 containsv, certificate(vi,vi+1) is stored either in
D.vp or in D.vk. Thus, every certificatév;,vi11) in the chain fromvg to v is stored in
D.vouUD.w. HenceD is a dispersal of the full chain s€Sof G.

Proof of Second Part:

LetD’ be another dispersal 6fSand(u, v) be any certificate i€S By the definition
of full chain set, if Algorithm 3 is applied t&, then certificatéu, v) is on every directed
chain from a node ilR.u to a node inR.v in CS whereR.u andR.v are the two sets
computed by Algorithm 3 for certificat@, v). ThereforeD'.(u,v) is a superset dR.u
andR.v, so|D'.(u,v)| > |[RUURV| > min(|R.u|,|RVv|) = |D.(u,Vv)|. This is true for any
certificate(u,v) in CS thuscostD’ is no less thamostD. ThereforeD computed by
Algorithm 3 is optimal. ]

The complexity of Algorithm 3 i©(en), whereeis the number of certificates in the
input concise certificate graph ands the number of nodes in the concise certificate
graph.

7 Related Work

Several papers have investigated the use of certificatesofdidentiality, authentica-
tion, and authorization. We summarize the results of thapers in the following para-
graphs.

Architectures for issuing, storing, discovery, and vdiiaig certificates in networks
are presented in [2], [3], [4], [5], [6], [7], [8], [9], and {. In a large scale network
such as today’s Internet, one cannot expect to have a cexnittabrity to issue, store,
and validate all the certificates. A distributed system, ieteach user participates in
issuing, storing, and validating certificates is desirableuch a network.
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In[11] and [12], distributed architectures for issuingtdamates, particularly in mo-
bile networks, are presented.

In [11], Zhou and Haas present an architecture for issuintgficates in an ad-hoc
network. According to this architecture, the network kaservers. Each server has a
different share of some private kel. To generate a certificate, each server uses its
own share ofk to encrypt the certificate. If no more thauservers have suffered from
Byzantine failures, wherk > 3t + 1, then the resulting certificate is correctly signed
using the private keyk, thanks to threshold cryptography. The resulting certifican
be decrypted using the corresponding public key which issknto every node in the
ad-hoc network.

In [12], Kong, Perfos, Luo, Lu and Zhang presented anottetriduted architecture
for issuing certificates. Instead of employikgervers in the ad-hoc network, each node
in the network is provided with a different share of the piévikeyrk. For a nodau to
issue a certificate, the noddorwards the certificate to its neighbors and each of them
encrypt the certificate using its sharerkf If nodeu has at leadt+ 1 correct neighbors
(i.e. they have not suffered from any failures), the resgltertificate is correctly signed
using the private keyk.

Both work assume that a certificate will be signed by a spqxiahte key of an
authority, and distribute the private key among many sereemsers. By contrast, in
[13] and this paper, we propose a distributed architectirereevery node has both a
public key and a private key so it can issue certificates fgiadiner node in the network.
This architecture is very efficient in issuing and validgtoertificates but cannot tol-
erate Byzantine failures. In particular, if one node sfieom Byzantine failure, then
this node can successfully impersonate any other nodesthe&chable from this node
in the certificate graph of the network. This vulnerabilityByzantine failures is not
unique to our certificate work. In fact, many proposed cesté architectures, e.qg. [2],
[3], while [12], [4], [10], and [9] yield similar vulnerahities. Recently, we have identi-
fied a metric to evaluate the damage from this type of attabkscall it “vulnerability”
of the certificate system and discuss it in more details if.[14

In [10], Li, Winsborough, and Mitchell presented a role-sgdrust management
languageRTy and suggested the use of strongly typed distributed cextifistorage to
solve the problem of certificate chain discovery in distrifalstorage. However, they do
not discuss how to efficiently assign certificates among t$teiluted storages. By con-
trast, our work focuses on minimizing storage overhead itifate dispersal among
the users while they have enough certificates so that thaoerieed for certificate chain
discovery.

In [15], Ajmani, Clarke, Moh, and Richman presented a disiiéd certificate stor-
age using peer-to-peer distributed hash table. This watkrass dedicated servers host
a SDSI certificate directory and focuses on fast look-upiserand load balancing
among the servers. By contrast, our work assigns certifidat@isers such that there
is no need for look-up and there are no dedicated certifitatage servers. Our work
also focuses on efficient use of storages in all users in m&two

In [16], Reiter and Stubblebine investigate how to increessirance on authenti-
cation with multiple independent certificate chains. Thaydduce two types of inde-
pendent chains, disjoint paths (no edge is shared by anytaing) and k-connective
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paths (k certificates need to be compromised to disconngbiesle paths). This paper
shows that there are no polynomial-time algorithms fortimcpmaximum sets of paths
with these properties and presents approximation algosth

Perhaps the closest work to ours is [17] where the authorsatby Buttyan, and
Capkun, investigated how to disperse certificates in afwati graph among the net-
work nodes under two conditions. First, each node storesdhee number of certifi-
cates. Second, with high probability, if two nodes meet ttiry have enough certifi-
cates for each of them to obtain the public key of the othecd@trast, our work in [13]
and here are based on two different conditions. First, @iffenodes may store differ-
ent number of certificates, but the number of certificateegtn nodes is minimized.
Second, it is guaranteed (i.e. with probability 1) that ibtmodes meet then they have
enough certificates for each of them to obtain the public Kelg@other (if there exists
a chain between them in the chain set).

Later, the same authors have showed in [18] that a lower boartde number of
certificates to be stored in a nodg,is— 1 wherenis the number of nodes in the system.
By contrast, we showed in [13] that the tight lower bound om élverage number of
certificates to be stored in a nodeei&, wheree is the number of certificates in the
system. Our work here shows that finding an optimal disperfsalgiven chain set is
NP-Complete, and presents three polynomial-time algmstivhich compute optimal
dispersal of three classes of chain sets.

8 Conclusion

We have shown that, in general, finding an optimal disperfsalgiven chain set is NP-

Complete. We have also discussed three polynomial-timeridhgns, each of which

computes an optimal dispersal for a rich class of chain Bef&9], we have presented
more polynomial-time algorithms which compute an optimapdrsal for more classes
of chain sets. This result can be used in any network settiogiever, these algorithms
are particularly useful when the network is large. In a lssgale network such as to-
day’s Internet, one cannot expect to have a central auytforistoring and distributing

certificates among all users in the network. Instead, userstore a subset of certifi-
cates in the network so that any user can obtain the publiokéye other whom the

user wants to securely communicate with (if there was a dhatime chain set). More-

over, in a large scale network, not all certificate chains éewificate graph are in use.
Computing an optimal dispersal of a chain set instead ofutheliain set of a certificate
graph reduces the cost of dispersal.

This result can be also used as a metric to evaluate cemifigaphs. The optimal
dispersal cost is an important property of a certificate lgramce it affects the stor-
age requirement of each node in the network. This is espeamportant in ad-hoc
networks, where mobile nodes may be more restricted in tefrstorage than stable
nodes can be.
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