
A State-Based Language for Sensor-Actuator Networks
(Research supported in part by NSF award 0519907)

Anish Arora
Ohio State University

Mohamed Gouda
University of Texas

Jason O. Hallstrom
Clemson University

Ted Herman
University of Iowa

William M. Leal
Ohio State University

Nigamanth Sridhar
Cleveland State University

Abstract
This paper introduces a language design for sensor-

actuator networks. The main features are communication by
a soft-state abstraction and behavior control by periodic rule
evaluation. These features enable a state-based, rather than
event-based, style of programming. Dynamic changes to net-
work configuration and failures of components are automati-
cally handled by this approach. The design choices target ap-
plications which experience low-to-moderate rates of sensor
input and which do not require extreme, low-latency sensor
processing and actuation. Coordinated actuation is concisely
expressed in this language.

1 Introduction
Sensor Networking is an area born of the confluence of

technological progress, new application opportunities, and
visions of fine-grained embedding of computation in phys-
ical environments. Two fundamental characteristics of sen-
sor networking are the allure of inexpensive, programmable
sensing devices and the extreme variability of potential ap-
plications. Deployments also vary considerably: sensor
nodes (sometimes just called sensors) may formad hoc net-
works, or be arranged as fixed-topology networks dependent
on base stations; different combinations of movement (mo-
bile sensors, traveling data collectors) are possible. These
characteristics do not dictate any single, best methodology
for specification and programming of sensor network behav-
ior. Indeed, as applications of sensor networks evolve, a di-
versity of tools and languages will contribute to the success
of sensor network programming.

At present, tools and languages for programming sen-
sor nodes differ from those used for base stations. This
is logical, since sensor nodes have quite limited computing
resources (small memory, small bandwidth, limited battery
power) whereas base stations can be programmed with desk-
top and even enterprise-scale tools. Sensors either have no
operating system, that is, they are programmed using compil-
ers and supporting libraries for embedded processors, or the
operating system is tailored to the constraints of the sensor.
The techniques of enterprise software development, which
rely on significant runtime support, do not fit the constraints
of a sensor. The current theme of software development for
sensor nodes is an event-driven programming style.

Event-based programming reflects hardware characteris-
tics, where components have nonblocking interfaces and sig-
nal interrupts upon completion of operations; interrupts are
generated when environmental inputs exceed thresholds; in-
terrupts also occur when timers overflow and when messages

arrive. Event-based programming is “close to the wire”, en-
abling lean implementations (with minimal overhead) that
can satisfy tight timing constraints. This aspect of lean im-
plementation is suited to the constraints of sensor nodes,
however it comes with a price: software based on events
complicates program design [5].

Multiple languages and platforms together with an event-
driven programming style present a developer with a level
of technical complexity that can be daunting. Though event-
based programming likely can’t be beat for applications re-
quiring extremely low latency of exfiltration or applications
demanding maximum communication throughput, many ap-
plication functions do not demand that level of performance.
Our position is that an alternative language design with a
state-based foundation, available on multiple platforms,can
simplify programming. This paper proposes such a lan-
guage.DESAL (Dynamic Embedded Sensing and Actuation
Language), rests on the following five principles.

(1) State-based model of programming. DESAL eschews
event-driven logic: programs do not declare procedures for
event-triggered reaction to sensor input, timeouts, or mes-
sage reception. Instead, programs specify the actions that
should take place when given conditions, represented by ex-
pressions of state variables, hold. Our experience with sensor
network software is that, for a broad class of applications,
a significant portion of the logic neither requires tight tim-
ing nor precise accounting for all hardware events. Periodic
sampling and background recording of some data to flash
memory, ongoing health-status reports about the network, re-
selection of which sensors should be activated, could be ac-
tivities without stringent timing constraints (whereas signal
processing of acoustic sensors or accelerometers, once en-
gaged, needs to be timely). Further, such portions of the ap-
plication with loose timing constraints are typically parts that
application (or domain expert) programmers, sensor network
administrators, or deployment specialists most likely need to
tune and customize. Previous investigations observed that
such portions of an application benefit from scripting lan-
guages, virtual machines, and remote methods for query and
update; we add to this direction by observing that the event-
driven style of device drivers, often found in timed signal
processing routines and intensive, high-bandwidth streaming
protocols, need not be used for coding higher-level applica-
tion logic.

In state-based programs, computation is explicitly depen-
dent on declared state variables, and not dependent on im-
plicit or hidden values (the stack, suspension of control and
expected resumption after an event, and so on). Thereby pro-
gram invariants are more easily expressed, asserted, and vali-

dated; programs can be automatically checked to see whether
they have actions for all combinations of states (which pro-
motes fault tolerance and even self-stabilization). This posi-
tion shares with traditions of domain experts, who typically
model physical systems in terms of state variables for ease
of analysis.

(2) Communication is expressed by sharing state vari-
ables rather than operations that construct and send mes-
sages. A “soft state” implementation enables variable shar-
ing, which takes care of underlying concerns of packing
values into messages and retrying failed communication.
In essence, DESAL’s state sharing between nodes provides
cached access to remote values (subject, of course, to the dy-
namics of connectivity in the sensor network).

(3) Rule-based programs. DESAL’s execution model is
rule evaluation. The body of a program is a set of state-
ments, each statement having a boolean condition (guard)
and an associated action (a sequence of assignments to state
variables). One step in execution consists of selecting a state-
ment whose guard is true and performing the associated com-
mand or assignment.

(4) Dynamic binding. Some decisions about how state
variables are shared are deferred to runtime, depending
on the deployed network topology, sensor availability, and
other factors. DESAL presumes a dynamic binding service
equipped with sufficient health monitoring and robustness to
support shared variable communication in a sensor network
subject to faults and some types of asynchronous reconfigu-
ration.

(5) Timing of rule selection, periodicity parameters for
monitoring binding, and controlling the frequency of shared
variable communication between nodes are tunable values
exposed to the programmer. Where possible, depending on
the sensor platform, DESAL also provides a synchronized
clock for programmer convenience. Time synchronization,
combined with deep sleep between activations, means that
distributed components can wake up together, exchange and
act on state, then sleep again, thus enabling very low duty
cycles and hence low power consumption.

Contributions. Taken individually, each of (1)–(5) have
been proposed and investigated in previous sensor-network
research (Section 8 points to some comparable literature).
Our primary contribution is to combine features to yield a
simple but capable language. As a multi-platform language,
users do not need to master multiple technologies to use DE-
SAL; communication details are largely hidden; and rule-
based execution over state state matches commmonly-used
models. The inclusion of clock synchronization in the run-
time, which seems to be underutilized in current tools and
languages, makes it particularly easy to express coordinated
actuation.

2 Program and State
Program specification is comprised of several sections:

a program name and parameter section, a state declaration
section, a binding section, and a section for rules describing
program behavior. Section 3 provides details on the binding
section and Sections 4 and 5 explain rules in DESAL pro-
grams.

The program name section can specify implementation-
dependent parameters needed for compilation (which we do
not discuss in this paper). It is possible for multiple DE-
SAL programs to execute within a sensor network and inter-
act, and even possible that two or more DESAL programs
could execute within a node. Program names provide scop-
ing of named state elements. Each DESAL program execut-
ing within a node needs a distinct name so that its state vari-
ables have global reference names. Because a program can
be instantiated at many nodes, we use the termcomponent to
refer to an instantiation of a program within a node.

The state declaration section provides names and types
for variables manipulated by rules. Declarations may label
a variable as eithershared or local (the default). Section
3 describes how shared variables are linked to other com-
ponents, as directed by statements in a program’s binding
section: variable sharing isdirected, that is, for any shared
variable, one component has write access to the variable and
other (sharing) components have only read access. The pre-
cise sharing relation between variables may not be resolved
until runtime, so shared variable declarations need flexibility.
The statement

shared int16 m[];

declaresm to be a shared array of indeterminant size (lim-
ited, however, by platform constraints). This declarationen-
ables runtime binding to adjust the effective size ofm de-
pending on the number of sharing components. Variable
types can be simple (integer, float,etc) or structures (in the
sense of a C struct).

3 Shared Variable Binding
Binding is a dynamic service provided in DESAL’s run-

time platform. Before we present the syntax of binding
statements, preliminary concepts are introduced. Thesoft-
state store is a best-effort cache of variables shared from one
component to another. When the binding service establishes
sharing from, say, variablea to variableb, we say thatb is
bound to a; a is the source of the binding, andb is a sink
of the binding. Binding is generally a transient property, so
that a bound variable can cease to be so depending on net-
work conditions, node health, and related factors. Whenb is
bound toa, the component readingb usesb as a proxy for
readinga. The implementation of the soft-state store is such
that readingb could get an out-of-date value fora: our de-
sign sacrifices atomic (synchronous) semantics in favor of a
lightweight, adaptive implementation.

The selection of what is shared is controlled by specify-
ing names (variables and components) andattributes. At-
tributes refer to constant or slowly changing characteristics
of a node and its environment. Examples of attributes could
be a node’s unique identifier, its sensor modes, its loca-
tion/proximity in a static network, or connectivity (neighbor
relation) in the network. Non-examples of attributes would
include acoustic sensor readings, rapidly fluctuating values
in temperature, pressure and similar values that inhibit the
formation of reasonably durable bindings.

The binding engine is runtime middleware that continu-
ally binds and unbinds shared variables as constrained by
binding specifications, network conditions, and node re-

sources. The binding engine is also charged with transport-
ing values between nodes. Discussion of underlying net-
work protocols and various implementation possibilities for
the binding engine is outside the scope of this paper, how-
ever we can say that several tuning parameters and policies
governing the binding engine would be specified in DESAL
programs (in the program name section and binding section).

1 bindings {
2 b1 <- id.C1.x1;

3 b2 <- *.C1.x2;

4 b3 -> id.C1.x3;

5 b4 -> *.C1.x4; }
The program fragment above shows examples of elementary
bindings. The first binding declaration declares a binding
variableb1. The arrow directed to the left indicates thatb1

is a read-only binding. The right-hand side indicates that
b1 is bound to the variablex1 declared by programC1, a
component on the node identified byid. The second bind-
ing declaration is similar, but specifies awild-card binding;
it bindsb2 to any (ifb2 is a single variable) or all (ifb2 is an
array) instances ofC1.x2 in the logical neighborhood (dis-
cussed below). Binding declarations forb3 andb4 are anal-
ogous to the declarations forb1 andb2, but specify write
bindings. Hence,b3 can be used to effect updates on the
component variableC1.x3 hosted by the node identified by
id. In the case ofb4, which may be bound to multiple com-
ponents, writes against the binding are dispatched to each of
the end-points by the binding service.

1 bindings {
2 b5 <- *.C1.x5 :

3 (sensors & mag) != 0 &&

4 position.x >= 5 &&

5 position.x <= 10; }
The program fragment above has a binding specification that
refers to attributes. Variableb5 (if an array) can bind to
all instances ofC1.x5 in the logical neighborhood equipped
with a magnetic sensor, and which have geographic positions
within the desired range.

In addition to the constraints explicitly specified in the
binding section, DESAL imposes runtime constraints. No
shared variable can be simultaneously the sink of multiple
bindings. No shared variable can be simultaneously sink and
source of multiple bindings. One shared variablecan be the
source of multiple bindings (with distinct sinks). Specifica-
tions can invite binding from sink (<-) or from source (->).
Binding can be established between, sayC1.a andC2.b, if
C1’s binding specification fora is a constraint satisfied by
C2.b andC2 has no binding specification forb (that is, the
binding constraint onC2.b is empty). Binding is also possi-
ble when both endpoints have binding statements, provided
that one is a sink specification and the other is a source spec-
ification; in this case, for a binding fromC1.a to C2.b be
established, the source-constraints ofC1.a must be compati-
ble with sink-constraints ofC2.b.

The reader may wonder whether both types of binding,
-> and <- are necessary. While it is possible to express
binding constraints entirely from the sink side, our experi-
ence with small thought experiments is that applications can
be expressed more succinctly and modularly by permitting

both orientations. A practical example of this is a frequently
recurring application architecture, namely thebase station
centric architecture [1], which puts nearly all of the com-
putational activity in the base station and uses sensors in a
command-and-control fashion. Here, it makes sense to put
all binding specifications in the base station, which has (al-
most) no memory constraints. The binding engine imple-
mentation at sensors can be minimized in this type of ar-
chitecture. Both types of binding are necessary at the base
station,-> to distribute commands to sensors and<- to collect
responses from sensors.

DESAL’s binding engine mediates between program
binding specifications, current binding state, and network
connectivity and transport services. Above, we refer to bind-
ing with respect to thelogical neighborhood. In rudimen-
tary implementations of DESAL, this translates to the 1-hop
neighborhood of a node, and in richer implementations of
DESAL, the logical neighborhood can span the network; in
a base station centric architecture, neighborhood only has
meaning between base station and sensor, where a typical
routing structure such as a spanning tree (or generalization
thereof) could suffice to provide the logical neighborhood.

An established binding at runtime might seem similar to
the fundamental abstraction of a connection in network de-
sign. However our experience with the dynamics of con-
nectivity in sensor networks and limited resource available
to sensor nodes argues for a lighter weight concept than,
say, a TCP connection. Previous proposals for binding in
sensor networks (on richer platforms) constrains durationof
bindings, so as to avoid “thrashing” of bindings [11]. Note
that even a guaranteed duration can be problematic, because
connectivity can evolve rapidly, leaving established bindings
essentially useless. Our approach to this and similar prob-
lems is (i) to allow awareness of binding (knowing whether
a shared variable is bound or not) at the sink, but not the
source; and (ii) to support binding specifications that refer to
connectivity attributes (link quality, signal strength, or other
measures). A history of connectivity attributes can be a prac-
tical heuristic for binding. However, an alternative for appli-
cations deployed on known, static topology could be bind-
ings based on that topology, without regard to connectivity
dynamics, plus having enough redundancy in the topology
to support application requirements despite some connectiv-
ity loss.

The binding engine takes advantage of (i), that only the
sink is aware of binding, in its soft-state implementation of
shared variable transport. The program at the sink refers to
the most recent value of the bound shared variable in soft-
state store when executing statements. If connectivity is lost,
the most recent value remains unchanged and available to the
program until the binding engine infers the loss of connec-
tivity and withdraws the sink’s binding. How, then, can a
sink know whether or not a bound shared variable is stale?
Our answer to this question, discussed in Section 5, is to
make timestamps available to DESAL programs, which can
be used to define freshness according to application require-
ments.

Local Bindings. One special case diverges from network
mechanisms outlined above. Local bindings are established

within a node, and can be statically engineered when pro-
grams are composed and compiled. One example of this
would be bindings between DESAL components hosted on
the same device; another example (probably the most fre-
quently occurring case) is the use of binding for communi-
cation between a DESAL component and the host operating
system, drivers of sensors, or services that process significant
quantity of sensor input. Many system calls and sensor driver
methods can be encapsulated by wrappers that translate re-
quest and response to shared variable communication. Our
convention for examples in this paper is that variables shared
with system services begin with$, for instance$Clock and
$Temperature.

4 Rule-Specified Behavior
When executed, a component changes state according to

rules that modify its state variables. Except for shared vari-
ables that have sink (<-) binding specifications, rule exe-
cution can modify any of the component’s variables. The
remainder of this section describes the syntax and runtime
evaluation of rules; we defer discussion of timing aspects to
Section 5.

Therules section of a DESAL program consists of one or
morebody subsections, and each body subsection contains a
list of guarded commands. Aguarded command is a state-
ment of the formguard -> command, where the guard is a
boolean-type expression on state variables and the command
is an assignment to state variables. Lists of guarded com-
mands are formed using the[] operator. The example

t>=v -> v=t-1 [] i==n -> b=True

composes a list of two guarded commands. A common id-
iom of DESAL is one consisting of a list of of guarded com-
mands defined over the entries of an array, such as

t[0]>v -> v=t[0] [] t[1]>v -> v=t[1] [] · · ·
[] t[m-1]>v -> v=t[m-1]

For this recurring idiom, DESAL provides closed-form syn-
tax abbreviating the above as

([] i: 0<=i<m: v>t[i] -> v=t[i])
For indeterminant arrays, the preferred form for the idiom
above is further abbreviated to

([] i:: v>t[i] -> v=t[i]) (1)
since the DESAL runtime infers the effective size of the ar-
ray. Similar quantified notation can be used in expressions
within guarded commands: for example,(count i:: t[i]>0)
returns the number of (bound) positive elements oft.

At runtime, therule engine evaluates guards and executes
commands. With respect to any guarded command of a com-
ponent, rule execution is atomic: no component sink variable
is changed by the binding engine during the rule’s execution
and no other rule in the component is executed concurrently.
Therefore, the assignment part of a guarded command can
be a compound expression, including functions:

t>v -> v=t ; if v>99 { g[k].rec=f(v,g[k].rec) }

From a formal perspective, because execution is atomic, it
turns out that a compound expression is equivalent to one
(multiple variable) assignment statement.

The rule engine skips guarded commands that refer to
shared variables that have sink (<-) bindings declared and are

currently unbound. For example, at any point during compo-
nent execution, evaluation of (1) above would reduce to a
no-op if all instances oft[i] are unbound at that point. DE-
SAL program execution is thus automaticallydynamic and
adaptive to current network conditions: as the logical neigh-
borhood evolves, evaluation of guarded commands adapts
without requiring developers to explicitly write conditional
expressions on current topology.

The [] operator, which is the unit composing a list of
guarded commands within a body subsection, owes some
motivation to early research on concurrency semantics:A[]B

denotes nondeterministic selection ofA or B during execu-
tion, which can represent concurrent processes in an inter-
leaving semantics. Following this interpretation of[], the
binding engine could choose to execute guarded commands
of a body section in any order. Our motivation for nonde-
terministic selection is more specific: efficient evaluation of
a list of guarded commands may not be a fixed sequential
evaluation of the list, but instead some ordering chosen at
runtime by the binding engine. (Efficient evaluation depends
on platform characteristics and the timing of system com-
ponent interactions.) Our proposal for body section execu-
tion is that, once a body section is selected to execute, each
guarded command in that section has the opportunity to be
executed at least once, but the order is unknown to the pro-
grammer.

5 Execution Timing
Rule evaluation based on state variables decouples under-

lying system and device events from programmed response,
which puts delay between an event occurrence and subse-
quent processing. Systems that refrain from synchronous
processing of device interrupts may use polling instead of
interrupts to achieve real-time objectives. By schedulingre-
peated polling at appropriate time intervals, delays between
event occurrence and processing are limited. The rule en-
gine takes a similar approach for scheduling: body specifi-
cations in a program may specify time intervals for periodic
evaluation. A body declaration “body period(15) guarded
command list” specifies that the list of guarded commands
evaluates once per 15 time units. (To simplify the presenta-
tion we omit detailed definition of time units.)

The rule engine scheduling of periodic bodies is best-
effort. We do not presume a real-time system platform, and
DESAL components may compete with other services in
sensor nodes, so timed scheduling can be imprecise. (We
generally expect relative error in implemented time intervals
decreases as a function of period length.) Guarded com-
mands can read a built-in shared variable$Clock (a system
clock) to reliably measure elapsed time.

Our full vision for DESAL leverages the availability of
clock synchronization, which now has numerous implemen-
tations [21]. With synchronized time, the$Clock can be
copied in guarded command assignment to a timestamp field
of a source shared variable. This makes it possible for sinks
to measure freshness and for command-control patterns to
enforce timeliness policies. The rule engine also exploits
synchronized clocks: if components in different nodes have
body period(15) subsections, then rule engines in the nodes

begin their evaluations at the same time (again, on a best-
effort basis). This aspect of DESAL enablescoordinated ac-
tuation; many nodes can act in concert to sense or actuate
together. More general syntax for the body section is

body period(interval,offset,repeat)
The interval specifies the length of the time period. By de-
fault, as stated above, all components with such a body sub-
section align their periodic evaluations. Withoffset, compo-
nents can stagger the beginning of their periods. Therepeat
parameter, if given, specifies an additional (sub) periodic
step. The specificationperiod(100,50,5) targets guarded
command evaluation at time slots 50, 55, 60, . . . , 95 (rela-
tive to 0 being the start time of each period).

For example, a base station program might specifype-

riod(30,0) with a guarded statement list that assigns a source
shared variablecommand. Sensor nodes have access to the
value ofcommand sometime later, because the binding en-
gine deposits the value to their respective soft state stores.
Suppose the expected time delay for this transfer is 5 time
units. In sensor nodes, a plausible body specification ispe-

riod(30,15), which provides enough time (plus a tolerance
factor) to get the latest command, perform local computa-
tion, and assign to a sourceresponse shared variable that is
bound to a base station sink variable. In essence, this ex-
ample lifts the suggested pattern of polling (as an alternative
to event-driven programming) from the level of node to the
level of end-to-end service. Of course, transfer ofcommand

to sensor andresponse can fail (message loss), bindings can
be lost (topology change), however these cases are easily de-
tectable at the base station using sequence numbers or times-
tamps as tags oncommand andresponse.

Our proposal to allow multiple body subsections within
the rule section of a program is based on the observation that
many applications are composed of activities that naturally
have different time scales. Data acquisition and exfiltration
have one desired frequency, management functions (network
health monitoring, tuning) have another.

Another aspect of execution timing impacts the program-
mer’s view of communication through shared variables. A
programmer has a choice of at least two views on the seman-
tics of shared state. The programmer might only care about
the most recent available state, such as the current tempera-
ture, in which case missed sensor readings are unimportant;
or the programmer might want to coordinate state transfer,
in which case synchronized timed rule evaluation can be em-
ployed.

6 Coordination Example
The context for the example presented in this section is

a sensor-actuator network with a base station. Each node
has a static identifier that can be referenced in bindings and
guarded commands as$Id. The base station’s$Id equals
zero; nodes with identifiers 1..12 havestrobe actuators. The
interface to the strobe device uses shared variables$Strobex

and$Strobed. $Strobex can be written;$Strobed is read-
only to the program. Assigning$Strobex=$Strobed is taken
to be a command to the strobe device to emit a signal. After
the signal has been fired, the strobe device sets$Strobed so
that$Strobex!=$Strobed. Other network nodes havestrobe

sensors, which register intensity (or phase) of a strobe firing.
Variable $Rstrobe provides the latest value from a strobe
sensor and a functionRSreset() requests to reset$Rstrobe.
Due to space constraints, we present fragments of actuator
and sensor nodes only. (The base station would collect data
from the strobe sensors via sink variables.)

1 body period(130,10*$Id) {
2 $Clock - lastStrobe > 10 -> {
3 lastStrobe=$Clock;
4 $Strobex=$Strobed; } }

Above is a fragment of the program for an actuator node.
Each actuator component schedules strobe firing at a distinct
time within the periodic interval of 130 time units.

1 state

2 type struct sval {
3 clock t time; int sval; }
4 shared sval T;
5 rules body period(130,15,10) {
6 $Rstrobe!=0 -> {
7 T.sval=$Rstrobe;
8 T.time=$Clock;
9 RSreset(); } }

The program of strobe sensors above records to a shared vari-
ableT, a structure containing a sensor value and a times-
tamp. No binding is given because a sink binding is specified
at the base station. Strobe sensors record at times 15, 25,etc,
if the strobe sensor has registered any value.

7 Phased Data Collection
The example in this section involves iterative base station

collection of an average temperature taken when at least 70%
of the sensors have reported. When the body subsection for
data collection is executed at the base station, and the 70%-
threshold is met, then the base station initiates a new phase,
which the binding engine disseminates to all sensors (phase

is shared to all sensors). No specific timing constraints are
given in this program; an untimed body statement for the
base station is:

1 rules body {
2 (count i:: R[i].p==phase)/Nb(R)>=0.7 -> {
3 AvgRecord(R,phase);
4 phase=phase+1; } }

Shared arrayR is a sink at the base station, bound to all sen-
sors in the logical neighborhood;Nb(R) is the number of
bound elements ofR. Field R[i].p is a value copied by the
sensor from its soft-state copy ofphase; field R[i].v is a tem-
perature value. Statement 3 records the average of theR[i].v

fields whereR[i].p==phase. The body of the sensor program
has the statement

r.p!=bph -> { r.p=bph; r.v=$Temperature; }

Shared variabler is source to the sink arrayR. Shared vari-
ablebph is sink to base station sourcephase; phase differ-
ence observed at a sensor is acknowledged inr.p along with
recording temperature.

8 Related Research
Much of current sensor network programming is event-

based, inheriting the tradition of embedded system program-
ming, which emphasizes fine-grained control of devices us-

ing minimal resources, and is close to the platform archi-
tecture. This style tends to be hand-crafted; toolkits for en-
hanced software productivity enable a variety of services to
be combined for programming an application [19, 10, 15]; a
methodology for developing the applications [13], can also
accelerate application program development. Most toolkits
and distributed computing platforms continue two aspects of
traditional embedded system programming, the event-driven
approach to processing and an imperative, sequential (but
multithreaded) programming language.

High level abstractions exploit common-case application
design patterns, enabling a declarative specification style for
base station query or continual aggregation [6, 7, 8]. Macro-
programming, or “programming the network as a whole”
makes analogy to MIMD architectures, and research has
shown that numerous applications fit a pattern of function-
parameterized and regional stream processing of events [5,
4, 3].

Between the extremes of device-centric, embedded pro-
gramming systems and higher-level macroprogramming
styles, there are frameworks and toolkits that presume some
networked middleware services, and conceive of the sensor
network as a type of distributed computing platform. For ex-
ample, given a virtual machine implementation in all sensor
nodes, mobile agents and an abstract shared dataspace [9]
could be used to program applications.

Expressing computation with a set of conditional rules is
an old idea, in theory dating to early proof derivation sys-
tems. In the space of sensor network research, rule-based
programming is advocated in [17, 18] and investigated by
ongoing research [12, 2, 20] which are closely related to DE-
SAL, though are either event-based or lacking the timing fa-
cilities and soft-state binding of our design. Binding issues
in sensor networks have been examined in [11], but not in
combination with rule-based execution.

Timed scheduling as a language feature is implemented
in [19], though not for a rule-based execution model. Giotto
[14] offers a programming model with fine-grained timing of
tasks, but suited to safety-critical embedded systems where
task timing is known and a real-time substrate is available.

9 Summary
DESAL combines notions of rule-based component spec-

ification, communication by a shared variable abstraction
built upon binding constraints and soft-state, and facilities
for time awareness and timed execution. Periodic schedul-
ing of guarded commands compensates for the lack of event-
triggered execution. Sections 6 and 7 suggest how DESAL
is applicable to timed and untimed execution control. We
are completing initial implementations of DESAL compilers
and plan to assess resource and performance costs in com-
parison to hand-crafted, event-oriented implementationsof
various protocols. In an initial experiment with a DESAL
prototype, a program with a dozen guarded commands, the
binding engine, the rule engine, clock synchronization, ra-
dio stack, sensor drivers,etc, altogether consume about 1600
bytes of RAM on a Telos mote.

10 References
[1] O Gnawali, KY Jang, J Paek, M Viera, R Govindan, B Greenstein,

A Joki, D Estrin, E Kohler. The tenet architecture for tieredsensor
networks.SensSys’06 Proceedings of the 4th International Conference
on Embedded Network Sensor Systems, pp. 153-166, 2006.

[2] S Sen, R Cardell-Oliver. A rule-based language for programming
wireless sensor actuator networks using frequence and communica-
tion. In Proceedings of EMNETS’06, 2006.

[3] R Gummadi, O Gnawali, R Govindan. Macro-programming wire-
less sensor networks using Kairos. InProceedings of the Inter-
national Conference on Distributed Computing in Sensor Systems
(DCOSS’05), 2005.

[4] R Newton, Arvind, M Welsh. Building up to macroprogramming:
an intermediate language for sensor networks. InProceedings of the
Fourth International Conference on Information Processing in Sensor
Networks (IPSN’05), 2005.

[5] M Welsh, G Mainland. Programming sensor networks using abstract
regions. InProceedings of the First USENIX/ACM Symposium on Net-
worked Systems Design and Implementation (NSDI ’04), 2004.

[6] S Madden, M Franklin, J Hellerstein, W Hong. TAG: a Tiny AG-
gregation service for ad-hoc sensor networks. InProceedings of the
Fifth Symposium on Operating Systems Design and Implementation
(OSDI’02), 2002.

[7] S Madden, M Franklin, J Hellerstein, W Hong. TinyDB:
an acquisitional query processing system for sensor networks.
telegraph.cs.berkeley.edu/tinydb.

[8] S Chen, PB Gibbons, S Nath. Database-centric programming for
wide-area sensor systems. InInternational Conference on Distributed
Computing in Sensor Systems (DCOSS), June 2005.

[9] CL Fok, GC Roman, C Lu. Rapid development and flexible deploy-
ment of adaptive wireless sensor network applications. InProceedings
of the 24th International Conference on Distributed Computing Sys-
tems (ICDCS’05), 2005.

[10] T Abdelzaher, B Blum, Q Cao, Y Chen, D Evans, J George, S George,
L Gu, T He, S Krishnamurthy, L Luo, S Son, J Stankovic, R Stoleru, A
Wood. EnviroTrack: towards an environmental computing paradigm
for distributed sensor networks. InProceedings of the 24th Interna-
tional Conference on Distributed Computing Systems (ICDCS’04), pp.
582-589, 2004.

[11] C Intanagonwiwat, R Gupta, A Vahdat. Declarative resource nam-
ing for macroprogramming wireless networks of embedded systems.
UCSD Technical Report CS2005-0827, 2005.

[12] M Arumugam, SS Kulkarni. Programming sensor networks made
easy. Michigan State Technical Report MSU-CSE-05-25, 2005.

[13] J Liu, M Chu, J Liu, J Reich, F Zhao. State-centric programming
for sensor-actuator network systems.Pervasive Computing, October-
December, pp. 50-62, 2003.

[14] TA Henzinger, B Horowitz, CM Kirsch. Giotto: a time-triggered lan-
guage for embedded programming.Proceedings of the IEEE, 91:84-
99, 2003.

[15] R Pandey, J Koshy, E Bergstrom, D Durkin, J Wu, I Wirwan. System
software instructure for sensor network applications. InProceedings
of WSNA’04, 2004

[16] J Steffan, L Fiege, M Cilia, A Buchmann. Scoping in wireless sen-
sor networks. InProceedings of the 2nd Workshop on Middleware for
Pervasive and Ad-Hoc Computing, pp. 167-171, 2004.

[17] M Zoumboulakis, G Roussos, A Poulovassilis. Active rules for sensor
databases. InInternational Workshop on Data Management for Sensor
Networks DMSN (VLDB’04), 2004.

[18] E Klavins, RM Murray. Distributed algorithms for cooperative con-
trol. IEEE Pervasive Computing, 3(1):56-65, 2004.

[19] B Greenstein, E Kohler, D Estrin. A sensor network application con-
struction kit (SNACK). InProceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys’04), 2004.

[20] K Terfloth, G Wittenburg, J Schiller. Rule-oriented programming for
wireless sensor networks.International Conference on Distributed
Computing in Sensor Networks (DCOSS’06), 2006.

[21] B Sundararaman, U Buy, AD Kshemkalyani. Clock synchronization
for wireless sensor networks: a survey.Ad Hoc Networks 3(2005):281-
323.

