
Stabilizing Certificate Dispersal

Mohamed G. Gouda and Eunjin (EJ) Jung

Department of Computer Sciences,
The University of Texas at Austin,

Austin, TX U.S.A.
{gouda,ejung}@cs.utexas.edu

Abstract. A certificate issued by a user u for another user v enables
any user that knows the public key of u to obtain the public key of v.
A certificate dispersal D assigns a set of certificates D.u to each user u
in the system so that user u can find a public key of any other user v
without consulting a third party. In this paper, we present a stabilizing
certificate dispersal protocol that tolerates transient faults and changes
in the certificate system. For example, when a certificate is issued or
revoked, this change may lead the system into a state where the set
of certificates assigned to each user no longer constitutes a certificate
dispersal. Our “dynamic dispersal” protocol eventually brings the system
back to a legitimate state where the set of certificates assigned to each
user constitutes a certificate dispersal.

1 Introduction

In a distributed system, public key cryptography is often used to provide security
features such as authentication and authorization. For example, when a client
wants to have assurance that he is communicating with the correct server, then
the client can use the public key of the server for authentication. The client may
pick up a random number and encrypt it with the public key of the server. When
the server receives the encrypted message, the server decrypts the message with
the matching private key and sends the number back to the client. When the
client receives the correct number, the client can authenticate the server. In fact,
this is how customers authenticate the web servers using Secure Socket Layer
(SSL) [1] in the Internet. This use of public key cryptography necessitates that
the users know the public keys of other users in the system.

The public keys can be advertised through certificates. A certificate (u, v)
issued by a user u for another user v contains the public key of user v and is
signed with the private key of user u. Any user who knows the public key of
user u can verify this certificate and obtain the public key of user v. A certificate
dispersal D assigns a set of certificates D.u to each user u in the system so that
user u can find a public key of any other user v without consulting a third party.
In this paper, we show a stabilizing certificate dispersal protocol that tolerates
transient faults and changes in the certificate system.

The concept of stabilization [2,3] was first introduced by Dijkstra [4]. His de-
finition of a stabilizing system was “regardless of its initial state, it is guaranteed

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 140–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Stabilizing Certificate Dispersal 141

to arrive at a legitimate states in a finite number of steps.” This concept is very
useful in building a fault-tolerant system under a model of transient failures.
For example, when a certificate is issued or revoked, this change may lead the
system into a state where the set of certificates assigned to each user no longer
constitutes a certificate dispersal. Our “dynamic dispersal” protocol eventually
brings the system back to a legitimate state where the set of certificates assigned
to each user constitutes a certificate dispersal. In Section 5, we prove that our
dynamic dispersal protocol is stabilizing.

In the following sections, we give formal definitions of certificate systems and
present our dynamic dispersal protocol. We prove that this protocol is stabilizing
and discuss some events that may lead the system out of the legitimate states
and show that the dynamic dispersal protocol eventually brings the system back
to a legitimate state.

2 Certificate Systems

We consider a system where each user u has a private key R.u and a public key
B.u. In this system, in order for a user u to securely send a message m to another
user v, user u needs to encrypt the message m using the public key B.v, before
sending the encrypted message, denoted B.v{m}, to user v. This necessitates
that user u know the public key B.v of user v.

If a user u knows the public key B.v of another user v in this system, then
user u can issue a certificate, called a certificate from u to v, that identifies the
public key B.v of user v. This certificate can be used by any user in the system
that knows the public key of user u to further acquire the public key of user v.
An example of such system is Pretty Good Privacy (PGP) [5].

A certificate from user u to user v is of the following form:

〈u, v, B.v, expr, sig〉

This certificate is signed using the private key R.u of user u, and it includes five
items:

u is the identity of the issuer,
v is the identity of the subject,
B.v is the public key of the subject v,
expr is the expiration date, and
sig is an encrypted message digest of

this certificate.

sig is constructed by computing a message digest of all other four items in
this certificate and encrypting the message digest with the private key R.u of
issuer u.

For simplicity, a certificate 〈u, v, B.v, expr, sig〉 is denoted (u, v). Any user
x that knows the public key B.u of user u can use B.u to decrypt sig in (u, v).
If the decrypted message matches the message digest of all other four items in



142 M.G. Gouda and E. Jung

d

c e

a

b

Fig. 1. A certificate graph example

the certificate, then user x can accept the key B.v in certificate (u, v) as the
public key of user v. A valid certificate (u, v) is an unexpired certificate with the
correct signature.

Even though public key cryptography has strong guarantees, a public key can
be used only for a finite amount of time. (A dictionary attack will eventually
succeed.) Therefore, each certificate has an expiration date and every certificate
system requires some degree of clock synchronization. In practice, the expiration
of certificates happens daily, and the lifetime of a certificate is often quite long,
say a year, so the clock may be skewed by hours and this certificate system
would still run correctly. As an alternative, we can also assume the clock rates of
all users are the same. (In this case, we need to use version numbers instead of
expiration dates.) All users will agree on the number of clock ticks as the lifetime
of a certificate and use version numbers to verify the freshness of certificates. For
simplicity, we assume that we have perfect clock synchronization in this paper.
However, the protocol works as long as the clock skew is small enough that users
will be able to detect expired certificates not too late.

The certificates issued by different users in a system can be represented by
a directed graph, called the certificate graph of the system. Each node u in the
certificate graph represents a user u and its corresponding public and private
key pair B.u and R.u. Each directed edge (u, v) from node u to node v in the
certificate graph represents a certificate 〈u, v, B.v, expr, sig〉.

Fig. 1 shows a certificate graph for a system with five users: a, b, c, d, and e.
According to this graph,

user a issued two certificates (a, b) and (a, d)
user b issued one certificate (b, c)
user c issued one certificate (c, e)
user d issued one certificate (d, c)
user e issued no certificates.

A simple path (v0, v1), (v1, v2), · · · , (vk−1, vk) in a certificate graph G, where
the nodes v0, v1, · · · , vk are all distinct, is called a certificate chain from v0 to
vk in G of length k. Node v0 in this chain can accept all the keys B.v1 · · · B.vk in
the certificates in this chain as the public keys of the users v1 · · · vk, respectively.
For example, user a in Fig. 1 may use the certificate chain (a, b)(b, c) to accept
the public keys B.b and B.c of user b and user c.

3 Certificate Dispersal

In a certificate system, when a user u wants to securely communicate with an-
other user v, u needs to find a certificate chain from u to v to obtain the public



Stabilizing Certificate Dispersal 143

key of user v. Therefore, each user can store a subset of certificates in the cer-
tificate system to securely communicate with each other.

A certificate dispersal of a certificate graph G is a function that assigns a
set of certificates CERT.u to each user u in G such that the following condition
holds. If there is a certificate chain from a user u to a user v in G, then u and v
can find a chain from u to v using the certificates in the set CERT.u∪CERT.v.

A certificate dispersal is optimal if and only if the average number of certifi-
cates stored in each user due to this dispersal is minimum.

For the certificate graph in Fig. 1, an optimal certificate dispersal is as follows:

CERT.a := {(a, d), (a, b), (b, c)}
CERT.b := {(b, c)}
CERT.c := {}
CERT.d := {(d, c)}
CERT.e := {(c, e)}

Based on this dispersal, when user a wishes to securely communicate with
user c, user a can use the two certificates (a, b) and (b, c) in CERT.a to obtain
the public key of user c. Also, when user b wishes to securely communicate with
user e, user b can use the two certificates (b, c) in CERT.b and (c, e) in CERT.e
to obtain the public key of user e.

In general, an optimal dispersal is hard to compute [6]. A certificate dispersal,
that is not necessarily optimal, can be obtained by storing a “maximal reach
tree” of certificates in each users. A maximal reach tree of a graph is a tree
that contains all the reachable nodes from the root. Lemma 4 in [7] proves the
following theorem.

Theorem 1. A certificate dispersal of a certificate graph G is obtained by stor-
ing in each CERT.u the certificates in a maximal reach tree rooted at u for each
user u in G.

For the certificate graph in Fig. 1, the certificate dispersal using reach trees
is as follows:

CERT.a := {(a, d), (a, b), (b, c), (c, e)}
CERT.b := {(b, c), (c, e)}
CERT.c := {(c, e)}
CERT.d := {(d, c), (c, e)}
CERT.e := {}

Note that a maximal reach tree rooted at user u does not necessarily include
all the users in the certificate graph. Each reach tree rooted at user u includes
only the reachable users from u in the certificate graph. For example, the maxi-
mal reach tree rooted at user d includes only users d, c, and e. Also, there can
be multiple reach trees in the certificate graph for the same root. For example,
there are two possible maximal reach trees rooted at user a as shown in Fig. 2.
CERT.a needs to contain the certificates of only one of the two reach trees. The
example dispersal above contains the certificates from the reach tree in Fig. 2(b).



144 M.G. Gouda and E. Jung

d

c e

d

c e

a

b

a

b

(a) (b)

Fig. 2. Two possible reach trees

4 Dynamic Dispersal

In the previous section, we discussed the concept of certificate dispersal. Algo-
rithms in [7] show how to compute a certificate dispersal for a “static” certificate
graph, i.e. the topology of the certificate graph does not change over time. How-
ever, in many certificate systems, certificate graphs do change due to issuing new
certificates, adding new users, revoking old certificates, and removing old users.
To maintain the certificate dispersal of a dynamic certificate graph, the changes
in the graph need to be propagated to the appropriate users.

Fig. 3 shows the inputs and output of our dynamic dispersal protocol. The
dynamic dispersal protocol running at each user has two inputs FORE and BACK.
FORE in user u is the set of the certificates that have been issued by user u, and
BACK in user u is the set of users that have issued certificates for u. Note that
the two inputs FORE and BACK in all users define the certificate graph of the
system. We assume that FORE and BACK are maintained by an outside protocol
that issues new certificates and revokes old ones. We also assume that FORE and
BACK are always correct and so they are always consistent. For example, if at
any time a certificate (u, v) is in FORE.u of user u, then u is in BACK.v of user v
at the same time.

The dynamic dispersal protocol maintains a variable CERT.u at each user u.
At stabilization, the value of CERT.u is a maximal reach tree rooted at user u.
Thus, by Theorem 1, the values of CERTs at stabilization constitute a certificate
dispersal of the system.

The dynamic dispersal protocol in user u is shown in Protocol 1 below.
Protocol 1 consists of three actions.

BACK/FORE

Certificate issuing/revocation

Dynamic Dispersal

CERT

Fig. 3. Inputs and Output of Dynamic Dispersal Protocol



Stabilizing Certificate Dispersal 145

In the first action, when the timer of user u expires, user u uses its input
FORE.u to update the variable CERT.u and sends a copy of CERT.u to each user
v in BACK.u. Then u updates its timer to expire after ltime time units, and the
cycle repeats. For convenience, we refer to CERT.u messages that user u has sent
in this action as a round of gossip. If user u does not change its CERT.u and does
not observe any change in its inputs FORE.u and BACK.u, then the time period
between two consecutive rounds of gossip by u is ltime time units. The value
ltime is expected to be in the range of days or months.

In the second action, user u receives a certificate tree sent by a user v (where
u is in BACK.v). In this case, u updates its CERT.u using its input FORE.u, and
then merges its CERT.u with the received certificate tree. If the update or merge
operations change CERT.u then u reduces the value of its timer to at most stime
time units. Note that the value stime is in the range of minutes or hours so it
is much less than the value ltime. In other words, any change in the variable
CERT.u causes u to initiate its next round of gossip after no more than stime
time units.

In the third action, when user u observes that its inputs BACK.u or FORE.u has
changed, then user u sets its timer to be at most stime time units. This change
causes u to initiate its next round of gossip after no more than stime time units.

4.1 Issuing certificates

When a user u issues a certificate (u, v), there are two events that need to occur.
(Note that these two events happen outside the dynamic dispersal protocol.)
The first event is to add (u, v) to FORE.u, and the second action is to add u
to BACK.v. These events cause users u and v to execute the third action in the
protocol and to reduce their timers to be at most stime time units. In stime
time units, the timers in both users u and v will expire and then users u and v
will execute the first action and update their CERTs accordingly and send a copy
to the users in their BACKs.

4.2 Revoking Certificates

When a user u wants to revoke a certificate (u, v) it has issued before, two events
need to occur in users u and v. (Note that these two events happen outside the
dynamic dispersal protocol.) The first event is to remove (u, v) from FORE.u, and
the second action is to remove u from BACK.v.

When user u observes the change in FORE.u, u executes the third action and
set its timer to be at most stime. When the timer expires, u will update CERT.u
and send it to users in BACK.u. When user x in BACK.u receives the newly updated
CERT.u from user u, x will merge it with its own CERT.x. During this merge, the
revoked certificate (u, v) and any path using that certificate will be removed
from CERT.x.

4.3 Expired Certificates

We assume that when a certificate (u, v) expires, it is removed from FORE.u and u
is removed from BACK.v in user v. This triggers user u to set its timer to be at most



146 M.G. Gouda and E. Jung

PROTOCOL 1. dynamic dispersal

user u

const stime, ltime //stime is a short time period
//ltime is a long time period
//ltime is greater than stime

input BACK : {x| x has issued a certificate (x,u)}
FORE : {(u,x) | u has issued a certificate (u,x)}

var CERT : a certificate tree rooted at u
tree : a certificate tree
timer : 0..ltime
v : any user other than u

begin
timer=0 -> update(CERT, FORE);

for each user v in BACK, send CERT to v;
timer:=ltime

[] rcv tree from v -> update(CERT, FORE);
merge(CERT, tree);
if CERT has changed, timer:=min(timer, stime)

[] BACK or FORE has changed -> timer:=min(timer,stime)

end

stime and user u will update its CERT.u accordingly and send a copy of CERT.u
to users in BACK.u. Similarly to the case of certificate revocation, when a node x
in BACK.u receives CERT.u, then x will update CERT.x and remove (u, v) from it.

4.4 update Procedure

Procedure update(CERT,FORE) is defined as follows.
It is convenient to explain this procedure by an example. Consider user a

where FORE.a in user a contains one certificate (a, b) and CERT.a contains two
certificates (a, b), (b, c) as shown in Fig. 4(a). When user a issues a new certificate

c

a

b c

a

b

a

c

a

bb

(a) (b)

FORE.a CERT.a FORE.a CERT.a

Fig. 4. update of CERT.a due to change in FORE.a



Stabilizing Certificate Dispersal 147

PROCEDURE 1. update(CERT, FORE)
INPUT: a certificate tree CERT rooted at u and

a set of certificates FORE issued by u
OUTPUT: a certificate tree CERT rooted at u

var tmp: a certificate tree rooted at u

begin

add all the valid certificates in FORE to tmp;
while there is a valid certificate (x,y) in CERT where

x != u,
x is in tmp, and
v is not in tmp

do add (u,v) to tmp;
CERT:=tmp;

end

(a, c), FORE.a changes into {(a, b), (a, c)}. This change causes user a to execute its
third action and then after stime time units to execute its first action. In the first
action, procedure update(CERT.a,FORE.a) is executed. First, all the certificates
in FORE.a are added to a certificate tree tmp and tmp becomes {(a, b), (a, c)}.
Certificate (b, c) cannot be added to tmp because user c is already in tmp. In the
last step, tmp is copied to CERT.a, and CERT.a becomes {(a, b), (a, c)} as shown
in Fig. 4(b).

4.5 merge Procedure

Procedure merge(CERT,tree) is defined as follows.
It is convenient to explain this procedure by an example. Consider user a

where FORE.a contains two certificate (a, b), (a, c) and CERT.a contains three cer-
tificates (a, b), (a, c), (b, d) as shown in Fig. 5(a). When user b revokes certificate
(b, d), FORE.b changes into {(b, c)}. This change causes user b to execute its third
action and after stime time units to execute its first action. In the first ac-
tion, user b updates its CERT.b to be {(b, c)}. User a still does not know about

d

c

a

b

d

cb cb c

a

b

(a)

CERT.b

(b)

CERT.b CERT.aCERT.a

Fig. 5. merge of CERT.a due to change in CERT.b



148 M.G. Gouda and E. Jung

PROCEDURE 2. merge(CERT, tree)
INPUT: a certificate tree CERT rooted at u and

a certificate tree ‘‘tree’’ rooted at t, where
t != u

OUTPUT: a certificate tree CERT

begin

if CERT has a certificate (u,t) ->
remove all the certificates in the subtree rooted at t from CERT;
while tree has a valid certificate (x,y) where

x is in CERT and
y is not in CERT

do add y and certificate (x,y) to CERT;
[] CERT has no certificate (u,t) ->

skip
fi

end

this revocation, so CERT.a remains the same as shown in Fig. 5(a). After stime
time units, user b sends a copy of its CERT.b to user a. When user a receives
the certificate tree {(b, c)}, user a executes its second action, and procedure
merge(CERT.a,tree) is executed with CERT.a and the received tree {(b, c)}. Pro-
cedure merge(CERT.a,tree) first checks if there is certificate (a, b) in CERT.a.
There is certificate (a, b), so the subtree rooted at user b, (b, d) in CERT.a is re-
moved from CERT.a. Then, certificate (b, c) is considered, but is not added to
CERT.a because c is already in CERT.a. In result, CERT.a becomes {(a, b), (a, c)}
as shown in Fig. 5(b).

5 Stabilization of Dynamic Dispersal

The dynamic dispersal algorithm in Section 4 is based on a message passing
model. In [8], it is shown to be hard to design stabilizing protocols in the tra-
ditional message passing model where there are channels between users. In this
paper, we use a non-conventional model of communication. A state consists of
the values of timer and CERT of all the users in the system. As mentioned in Sec-
tion 4, we assume that FORE and BACK of each user remain correct and consistent
in every state. In one state transition, only one user can execute its first action.
Furthermore, in the same transition, each user v in BACK.u receives the same
copy of this message and executes its second action. In other words, we have
no messages in transit, so there is no need for channels in the state description.
There are two reasons that we adopted this model. First, this model allows the
proofs to be easier to follow. Second, this model is sensible, given that the time
it takes for the timer in each user to expire is very large compared to the time



Stabilizing Certificate Dispersal 149

each state transition takes. stime is in the range of minutes and hours, and each
state transition takes only milliseconds, so we can assume that no two timers
expire at the same time.

For the proofs of convergence and closure, we define a computation to be
a sequence of states of the system where along with this computation FORE
and BACK of all the users remain unchanged. In the following theorems, we
show that the dynamic dispersal protocol eventually stabilizes into a legiti-
mate state, where the values of CERTs of all users constitute a certificate dis-
persal of the certificate graph of the system. Following the proof technique
in [9], we show the convergence and the closure of this protocol to prove its
stabilization.

Theorem 2. (Convergence) Each computation of the dynamic dispersal protocol
has a state where the value of each CERT.u in the protocol is a maximal reach tree
rooted at u in the certificate graph of the protocol (as defined by the two inputs
FORE and BACK of all users in the protocol).

Proof Sketch. To prove that CERT.u eventually becomes a maximal reach tree
rooted at node u of the certificate graph G, we first prove that CERT.u eventually
becomes a tree rooted at u, and then prove that every node that is reachable
from u in G is reachable in CERT.u.

There are two procedures, update(CERT.u,FORE.u)and merge(CERT.u,tree),
that can change CERT.u. The procedure update(CERT.u,FORE.u) constructs a
tree by starting from the certificates in FORE.u. All the certificates in FORE.u are
issued by user u, so the resulting tree from update(CERT.u,FORE.u) is rooted
at u. Similarly, the procedure merge(CERT.u,tree) adds certificates in the re-
ceived tree to CERT.u, a certificate tree rooted at u. Therefore, the resulting
tree from merge(CERT.u,tree) is also rooted at u. Based on these observations,
after a state transition in this computation, CERT.u in user u becomes a tree
rooted at u.

Now we prove that CERT.u is a maximal reach tree, i.e. any node that is
reachable from node u in G is also CERT.u. Assume that there is a path from
u to another node v in G, (u, u1)(u1, u2) · · · (uk, v). Node uk has the certificate
(uk, v) in its FORE, so the certificate (uk, v) is in its CERT. Node uk sends its CERT
periodically to node uk−1, so node uk−1 will have a path from itself to node v in
its CERT. Repeatedly, each node on the path will send its CERT to the previous
node in the path and node u will have a path from itself to node v in its CERT.
Therefore, every node v that is reachable from node u in G is also reachable in
CERT.u. �

Note that our dynamic dispersal protocol is different from stabilizing span-
ning tree algorithms. The spanning tree algorithms in [10,11,12] build a single
spanning tree for the whole system that covers every process in the system, and
build one tree rooted at a special process (usually referred as a leader). Each
process in these algorithms stores the parent node identifier, the distance from
the root, and possibly the root identifier. On the other hand, our dynamic disper-
sal protocol stores a maximal reach tree in each user, which does not necessarily



150 M.G. Gouda and E. Jung

cover every user in the system. Also, in our dynamic dispersal protocol, there is
no leader, and each user u maintains a maximal reach tree rooted at u.

Theorem 3. (Closure) Executing any step of the dynamic dispersal protocol
starting from a state, where the value of each variable CERT.u in the protocol is a
maximal reach tree rooted at u, leaves the values of all CERT variables unchanged.

Proof Sketch. In a computation, the inputs BACK and FORE remain unchanged.
Therefore, only two types of steps can be executed: time propagation and the
first action. Time propagation cannot change the value of CERT. When the time
propagation causes the timer in user u to expire, the first action in the dynamic
dispersal protocol will be executed. When the timer expires, user u updates
its CERT.u with FORE.u, but CERT.u remains the same since FORE.u remains un-
changed. Now user u sends a copy of its CERT.u to each user v in BACK.u. User
v receives a tree and merge it with its own CERT.v. Since CERT.u is the same,
merge(CERT,tree)will not change CERT.v. Therefore, when the certificate graph
of the system does not change, CERT.u in each user u, a maximal reach tree rooted
at u, remains unchanged. �

6 Time Complexity

In this section, we compute the time in terms of the two timers stime and ltime
that takes to bring the system to stabilization. Note that each state transition
is triggered by a timer expiration in a user, so the time between any two state
transitions may be between 0 to ltime. Every state transition but the first one
towards stabilization is triggered by a timer whose value is at most stime, which
is shown below.

Theorem 4. In each computation of the dynamic dispersal protocol, the protocol
reaches a legitimate state in at most T time units, where

T = ltime× the length of the longest path in the certificate graph -1

Proof Sketch. A legitimate state of the dynamic dispersal protocol is one where
the value of CERT.u of every user u in the system is a maximal reach tree rooted
at u.

After the first ltime time units in the computation, each CERT.u is a tree
rooted at u, and the first two levels of this tree are correct. After the second
ltime time units, each user sends a copy of its CERT to the users in the BACK, so
the top three levels of each CERT are correct. The cycle repeats, and after ltime
× (the length of the longest path in the certificate graph-1) time units, all the
levels of each tree CERT are correct, so CERT.u becomes a maximal reach tree
rooted at u. �

We believe that the upper bound on the convergence span described in Theo-
rem 4 is quite loose. It is an interesting problem to compute a tight upper bound
of the convergence span.



Stabilizing Certificate Dispersal 151

7 Dispersal in Client/Server Systems

This dynamic dispersal protocol is useful in any dynamic certificate systems.
Consider a client/server system, where there are much fewer servers than clients in
the system. We can run the dynamic dispersal protocol among the servers and let
any server issue a certificate for a client. Each server will have an maximal reach
certificate tree in its CERT, so each server will be able to find a certificate chain
from itself to any client that has a certificate issued by an authenticated server.

For example, many coffee shops offer free Internet connection for their cus-
tomers. To prevent free-riders that are not customers, coffee shops may require
the customers to register. For convenience, a customer needs to register only once
at any coffee shop (the coffee shop issues a certificate for the customer), and the
customer can use the free connection at all coffee shops that are participating
in this membership without logging in or getting temporary authorization each
time he or she goes to a coffee shop, since any coffee shop has a certificate chain
from itself to the customer. The authentication using the certificate chain does
not require any interaction with the customer, so once the customer registers to
get a certificate from one coffee shop, the customer does not need to know how
he or she gets authenticated and authorized for the Internet connection.

Also, this client/server system can help two clients authenticate each other.
A client c1 has issued a certificate for a server s1 and s1 issued a certificate for
c1. A client c2 has issued a certificate for a server s2 and s2 issued a certificate
for c2. When client c1 wants to securely communicate with client c2, client c1
can ask server s1 for a certificate chain from s1 to s2 and use the chain and the
certificates (c1, s1) and (s2, c2) to find the public key of client c2.

A hierarchical certificate authorities used in Lotus Notes [13] is a special
case of such client/server system. In a system with a hierarchical certificate
authorities, the certificate graph between certificate authorities constitutes a
star graph, where the root certificate authority has issued a certificate for each
non-root certificate authority and each non-root certificate authority has issued
a certificate for the root certificate authority. In such a system, when a client
c1 who has issued a certificate for a certificate authority ca1 wants to securely
communicate with another client c2 who has issued a certificate for a certificate
authority ca2, c1 can contact ca1 for certificates (ca1, root)(root, ca2). In Lotus
Notes, ca1 also finds the certificate (ca2, c2) from ca2 so that c1 can use the
public key of c2 safely without communicating with c2.

8 Concluding Remarks

Public key cryptography is often used to provide security features in a distributed
system. For users to use public key cryptography, they need to know the public
keys of other users. Certificates are useful to advertise public keys to other users.
In particular, when a user u wishes to securely communicate with another user
v, user u needs to find a certificate chain from u to v. A certificate dispersal D
assigns a set of certificates CERT.u to each user u so that user u can find such
a chain in CERT.u ∪ CERT.v.



152 M.G. Gouda and E. Jung

We present the dynamic dispersal protocol, which eventually stabilizes a
certificate system into the legitimate states where the set of certificates assigned
to each user constitutes a certificate dispersal when a certificate graph of the
certificate system is dynamic. We prove the convergence and the closure of the
protocol, and show the time complexity of the convergence.

References

1. Dierks, T., Rescorla, E.: The TLS protocol version 1.1. Internet Draft (draft-ietf-
tls-rfc2246-bis-08.txt) (2004)

2. Dolev, S.: Self-Stabilization. MIT Press (2000)
3. Herman, T.: A comprehensive bibliography on self-stabilization. Chicago Journal

of Theoretical Computer Science (1996)
4. Dijkstra, E.W.: Self-stabilization in spite of distributed control. ACM Communi-

cations 17 (1974) 643–644
5. Zimmerman, P.: The Official PGP User’s Guide. MIT Press (1995)
6. Jung, E., Elmallah, E.S., Gouda, M.G.: Optimal dispersal of certificate chains.

In: Proceedings of the 18th International Symposium on Distributed Computing
(DISC ‘04), Springer-Verlag (2004)

7. Gouda, M.G., Jung, E.: Certificate dispersal in ad-hoc networks. In: Proceedings
of the 24th International Conference on Distributed Computing Systems (ICDCS
‘04), IEEE (2004)

8. Gouda, M.G., Multari, N.: Stabilizing communication protocols. EEE Transactions
on Computers, Special Issue on Protocol Engineering 40 (1991) 448–458

9. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19 (1993) 1015–1027

10. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems. In: Proceed-
ings of the 9th Annual ACM Symposium on Principles of Distributed Computing,
ACM (1990)

11. Arora, A., Gouda, M.G.: Distributed reset. In: Proceedings of the 22nd Interna-
tional Conference on Fault-Tolerant Computing Systems. (1990)

12. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing
spanning trees. Inf. Process. Lett. 39 (1991) 147–151

13. Nielsen, S.P., Dahm, F., Lüscher, M., Yamamoto, H., Collins, F., Denholm, B.,
Kumar, S., Softley, J.: Lotus notes and domino r5.0 security infrastructure revealed
(1999)


	Introduction
	Certificate Systems
	Certificate Dispersal
	Dynamic Dispersal
	Issuing certificates
	Revoking Certificates
	Expired Certificates
	update Procedure
	merge Procedure

	Stabilization of Dynamic Dispersal
	Time Complexity
	Dispersal in Client/Server Systems
	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




